Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Carigent Round Raises $2M

Carigent Therapeutics Inc., which is designing a nanotechnology drug delivery method developed at Yale University, announced today it has secured $2 million in its first round of private equity financing by Saint Simeon Marketing and Investments Lda.

The Carigent technology is exclusively licensed through Yale and is based on discoveries by Carigent scientific co-founders W. Mark Saltzman, PhD, chairman of Yale's biomedical engineering department; Tarek Fahmy, PhD, assistant professor of biomedical engineering at Yale; and Peter Fong, PhD, Carigent's vice president and chief scientific officer.

Carigent said it will use the funding to advance its nanotechnology platform, laboratory production capabilities, partnerships with pharmaceutical and biotechnology companies and clinical studies.

Its technology enables exceptionally high-density anchoring, or "tethering," of biological targeting agents to the surface of biodegradable nanoparticles that encapsulate drugs or diagnostic agents. The company said this capability enables it to design "exceptionally versatile" customized nanoscale carriers. "On one hand, the platform allows for delivery and controlled release of therapeutic and diagnostic agents targeted directly to the site of pathology in specific tissues or cells, thus increasing delivered agent concentrations while minimizing systemic circulation of the drug and associated side effects," Carigent said in a statement. "On the other hand, the technology has the capability to render the particles 'stealthy' and increase the bioavailability and functional half-lives of therapeutics with formulation problems."

An example of how the technology might work: Carigent nanoparticles engineered to deliver an anticancer therapeutic enter the disease environment, dispatch an increased dose of the encapsulated drug in a controlled fashion to the site of the tumor or within individual cancer cells, and the carrier degrades over time. The method thus leaves healthy tissues unharmed and minimizes systemic side effects.

Carigent's nanoparticles incorporate FDA- approved PLGA, a polymeric material that is used for controlled drug delivery formulations due to its biodegradable and biocompatible nature and its ability to release encapsulated agents in a controlled fashion. Carigent said its platform "supports encapsulation of virtually any drug or molecule inside the nanoparticle, in addition to attachment of a broad array of ligand molecules to the surface at previously unattainable and unprecedented densities. These surface modifications enable disease-specific homing for delivery of both therapeutics as well as noninvasive contrast-imaging diagnostics."

The technology also supports combined targeting agents -- for example, a diagnostic imaging agent linked with a drug -- in one delivery vehicle.

"Controlled delivery of drugs using biodegradable nanoparticles provides a more efficient and less risky solution to many of the challenges of systemic drug delivery, including administration of larger-than-necessary doses, dose-limiting toxicity and poor specificity that can lead to harmful effects on healthy tissues," said Seth Feuerstein, MD, JD, president and a co-founder of Carigent. "With this technology, Carigent is able to deliver on four key promises of improved drug delivery: the ability to control drug release, target binding agents to a specific physiological site, combine multiple payloads within the carrier and engineer delivery enhancements for existing drugs on the market or for drugs that have failed due to formulation or toxicity issues."

For more information, visit: www.carigent.com

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media