Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Polarizers Spy Perilous Chems

Remote chemical detection is typically done using a technique called laser-induced breakdown spectroscopy (LIBS). This method enables chemists to analyze the composition of a suspected bomb without actually touching it.

The LIBS technique is typically used for “standoff” detection in harsh or potentially dangerous environments such as blast furnaces, nuclear reactors and biohazard sites, and on unmanned planetary probes like the Mars rovers.

Information provided by LIBS, however, is sometimes clouded by interfering signals caught by the spectroscope, and eliminating the background can be expensive. But a group of chemists at the University of Illinois at Chicago (UIC) reports that equipping LIBS with a polarizing filter can do the job at a lower cost and probably with equal or greater sensitivity than with the tools currently in use.

Robert Gordon, professor and head of chemistry at UIC, became interested in polarized light after reading books by cosmologist Brian Greene that described a slight polarization of the cosmic microwave background left over from the Big Bang. Out of curiosity, Gordon had his lab group zap a crystal of silicon by firing pairs of near-infrared laser pulses at 80 fs – or 80 millionths of a billionth of a second. This “mini-Big Bang-like” laser ablation caused a brief spark, or plasma, that gave off ultraviolet light, which the group checked for polarization.

“We thought we’d see maybe a few percent polarization,” said Gordon. “But when we saw 100 percent, we were totally astonished.”

The spectrum of light they studied, similar to the rainbow a prism creates when held up to sunlight, includes a series of lines that are the hidden signatures of chemical elements. To get rid of the background spectrum and focus just on the element lines, current LIBS uses a time-resolved method that works like a camera shutter by snapping at nanosecond speeds. Gordon’s group discovered that, by eliminating the shutter and instead using a rotating polarizer, they could filter out the background and focus on the lines.

“The polarizer costs just pennies, whereas a time-shutter is a very expensive component,” Gordon said. “By simply putting a polarizer in a detector and rotating it to get maximum signal-to-noise ratio, you can improve the quality of the signal effortlessly and fairly cheaply.”

Gordon said there is still basic work that needs to be done to answer why the light gets polarized. He said that varying the angle and the intensity of the laser pulses used to ablate the sample material may provide additional ways to enhance LIBS.

Gordon’s co-workers include postdoctoral research associates Youbo Zhao and Yaoming Liu, doctoral student Sima Singha and former undergraduate Tama Witt.

Funding came from the National Science Foundation and the US Air Force Research Laboratory Materials and Manufacturing Directorate.

For more information, visit: www.uic.edu



Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media