Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


BE Technique Reveals ‘Rayleigh Behaviors’

The revolutionary new band excitation (BE) technique, co-developed by Oak Ridge National Laboratory (ORNL) and Asylum Research, has provided clues to the origins of unique properties of materials, including spin and cluster glasses, phase-separated oxides, polycrystalline ferroelectrics and ferromagnets, that are rooted in their highly disordered structures.


Spatial maps of nonlinearity for different film thicknesses (thicknesses shown across top). The onset of nonlinearity with thickness proceeds through formation and merger of clearly visible micron-scale clusters with bulk nonlinearity value, as opposed to gradual increase of average nonlinearity.

These behaviors influence the scaling properties of the materials, including the thickness of thin films at which improved properties manifest. So-called "Rayleigh behaviors" have a direct bearing on the properties of nanoscale materials and, eventually, the uniformity of nanoscale devices.

The new observations, which were made possible by advances in scanning probe microscopy (SPM) at ORNL's Center for Nanophase Materials Sciences and Asylum Research, may result in the rethinking of 100-year-old theories behind the "quanta of nonlinearity" and properties of heterogeneous materials.

This work is funded by the Department of Energy’s Basic Energy Sciences CNMS user program. The principal investigators for this ground-breaking work are Stephen Jesse and Sergei Kalinin of ORNL, and Susan Trolier-McKinstry from Penn State. The findings were published April 20, 2010, in a Proceedings of the National Academy of Sciences (PNAS) article titled “Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics.”

“The nonlinear responses are a ubiquitous aspect of disordered materials that is directly linked to their unique functional properties,” said Sergei Kalinin of ORNL. “Our studies illustrate that the emergence of the nonlinear behavior is associated with large-scale collective responses, providing new clues to century-old problems.”

"The amazing aspect of BE measurements is that the local nonlinearity is measured quantitatively with less than 10% absolute error in volumes millions of times smaller than those addressable by macroscopic measurements,” added Roger Proksch, president of Asylum Research. “This is highly unusual for SPM."

For more information, visit:  www.AsylumResearch.com 




Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media