Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Plasmonic Nanobubbles Kill Cancer Cells

Rice Plasmonic nanobubbles, generated around gold nanoparticles with a laser pulse, can detect and destroy cancer cells in vivo by creating tiny, shiny vapor bubbles that reveal the cells and selectively explode them.

This study, from Rice University physicist Dmitri Lapotko, details the effect of plasmonic nanobubble theranostics on zebra fish implanted with live human prostate cancer cells, demonstrating the guided ablation of cancer cells in a living organism without damaging the host.


A set of images shows: A) a differential interference contrast (DIC) white light image of zebrafish embryo labeled with fluorescent human prostate cancer cells; B) a fluorescent image of the embryo in A, revealing the xenografted cancer cells; C) a high-magnification DIC image of the ventral tail fin; D) a fluorescent image of the same region in C that reveals xenografted cells (arrowhead); and E) a merged image of C and D. (Image: Wagner Lab/Rice University)

Lapotko and his colleagues developed the concept of cell theranostics to unite three important treatment stages — diagnosis, therapy and confirmation of the therapeutic action — into one connected procedure. The unique tunability of plasmonic nanobubbles makes the procedure possible. Their animal model, the zebra fish, is nearly transparent, which makes it ideal for such in vivo research.

The National Institutes of Health has recognized the potential of Lapotko's inspired technique by funding further research that holds tremendous potential for the theranostics of cancer and other diseases at the cellular level. Lapotko's Plasmonic Nanobubble Lab, a joint American-Belarussian laboratory for fundamental and biomedical nanophotonics, has received a grant worth more than $1 million over the next four years to continue developing the technique.


Researchers based at Rice University and the National Academy of Sciences of Belarus have demonstrated their method to kill cancer cells in vivo with plasmonic nanobubbles. From left: Dmitri Lapotko, Daniel Wagner and Ekaterina Lukianova-Hleb at Rice's zebra-fish lab. (Image: Jeff Fitlow/Rice University)

In earlier research in Lapotko's home lab in the National Academy of Sciences of Belarus, plasmonic nanobubbles demonstrated their theranostic potential. In another study on cardiovascular applications, nanobubbles were filmed blasting their way through arterial plaque. The stronger the laser pulse, the more damaging the explosion when the bubbles burst, making the technique highly tunable. The bubbles range in size from 50 nanometers to more than 10 micrometers.

>

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media