Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Atoms acting as lasers

An atom laser that behaves exactly like a light laser has opened up new possibilities in applications such as holograms.

A research team from The Australian National University ARC Centre of Excellence for Quantum-Atom Optics has shown that a beam of helium atoms can be made to have properties similar to a coherent laser light beam. The atom study confirms a theory first developed for light nearly 50 years ago by Roy Glauber, winner of the 2005 Nobel Prize in physics.

When scientists measure the time between the arrivals of the photons in laser beams, they find that the photons are randomly spaced, with all arrival times between photons equally probable. However, incoherent sources – such as lightbulbs – exhibit photon bunching, where it is more likely that photons will arrive within a short time of each other. The bunching is manifested by photons arriving in pairs (second order) or in triplets (third order).

The investigators realized that if they made the atoms extremely cold – within one-millionth of a degree of absolute zero – they could force them to march in step, creating an atom laser that behaves coherently exactly as a laser beam composed of photons. This showed, for the first time, that the same second- and third-order-coherence properties of lasers also apply to atoms. In addition, the cold atom laser demonstrated random distribution of arrival times with no bunching, indicating that it was perfectly coherent.

When the atoms were warmed back up, the group found that they no longer behaved coherently and once again exhibited bunching in pairs and triplets.

The research appeared in Science, Feb. 25, 2011 (doi: 10.1126/science.1198481).

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media