Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


New Electronics Material Closer to Commercial Reality

Researchers have developed a method for creating single-crystal arrays of graphene, an advance that opens up the possibility of a replacement for silicon in high-performance computers and electronics.

Graphene — a one-atom-thick layer of carbon — conducts electricity with little resistance or heat generation. The new findings represent an advance toward perfecting a method for manufacturing large quantities of single crystals of the material, similar to the production of silicon wafers, which could make possible a new class of high-speed transistors and integrated circuits that consume less energy than conventional silicon electronics.

 


This scanning electron microscope picture shows individual crystal "grains" in an array of a material called graphene. Researchers have developed a method for creating the arrays, an advancement that opens up the possibility of a replacement for silicon in high-performance computers and electronics. (Image: University of Houston)

"Graphene isn't there yet, in terms of high-quality mass production like silicon, but this is a very important step in that direction," said Yong P. Chen, corresponding author for the new study and assistant professor of nanoscience and physics at Purdue University.

Other researchers have grown single crystals of graphene, but no others have demonstrated how to create ordered arrays, or patterns that could be used to fabricate commercial electronic devices and integrated circuits.

The hexagonal single crystals are initiated from graphite "seeds" and then grown on top of a copper foil inside a chamber containing methane gas using a process called chemical vapor deposition. The seeded growth method, critical to the new findings, was invented by co-author Qingkai Yu of Texas State University.

"Using these seeds, we can grow an ordered array of thousands or millions of single crystals of graphene," Yu said. "We hope that industry will look at these findings and consider the ordered arrays as a possible means of fabricating electronic devices."

Findings are detailed in the June issue of Nature Materials. The work was conducted by researchers at Purdue, the University of Houston, Texas State University, Brookhaven National Laboratory, Argonne National Laboratories and Carl Zeiss SMT Inc.

For more information, visit: www.purdue.edu  

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media