Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Controlled Beam of Single Photons Produced

Quantum computing is expected to surpass conventional computing in terms of speed and performance of complex computations. However, the development of quantum devices for real-world applications has been met with major challenges.

In a significant step toward the development of quantum systems, scientists at MIT and Harvard University have identified a method that converts laser beams into streams of single photons in a controlled way. The discovery could lead to new quantum devices such as quantum gates, where a single photon switches another photon’s direction of travel or polarization.

It is difficult to control photons because the interaction between two photons is very weak at best, said Vladan Vuletic, the Lester Wolfe professor of physics at MIT. Encouraging such interactions requires atoms that interact strongly with photons — as well as with other atoms that, in turn, can affect other photons. For example, a single photon traveling through a cloud of such atoms might pass through easily, but might also change the state of the atoms so that a second photon is blocked when it tries to pass through.


An artist’s conception shows how any number of incoming photons (top) can be absorbed by a cloud of ultracold atoms (center), tuned so that only a single photon can pass through at a time. Being able to produce a controlled beam of single photons has been a goal of research toward creating quantum devices. (Image: Christine Daniloff)

In the new MIT-Harvard system, no matter how many photons are sent into the cloud, only one at a time emerges from it. The cloud acts as a kind of turnstile for photons, forcing the jumbled photons into an orderly succession of individuals. The technique is based on the concept of electromagnetically induced transparency (EIT).

The scientists focused a laser beam through a dense cloud of ultracold rubidium atoms at 40 µK to produce the EIT state that excites the cloud of atoms that is normally opaque to light while letting photons pass through at a slow speed. The atoms, which are in what is called a Rydberg state, do not allow a second photon to pass through if the first one has yet to emerge from the cloud. If a single photon enters, it passes through the temporarily transparent medium; if two or more enter, the gas becomes opaque again, blocking all but the first photon.

“If you send in one photon, it just passes through, but if you send in two or three, forcing them to squeeze through the tight focus of the laser beam, just one passes,” said Ofer Firstenberg, a Harvard postdoc. “It’s like a lot of sand going into an hourglass, but only one grain at a time can pass through.

The technique could be used to alter the state of atoms according to the number of photons striking them, with a second laser beam detecting those changed states. This could help scientists to measure a photon without altering it.

The system could form the basis of a single-photon switch. It also could be used to develop quantum logic gates, which are an essential component of an all-optical quantum information-processing system. Such systems, in principle, could be immune from eavesdropping when used for communication, and could allow for more efficient processing of some kinds of computational tasks.

The work appeared in Nature.

For more information, visit: www.mit.edu

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media