Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Light’s polarization states measured directly

Ashley N. Rice, ashley.rice@photonics.com

There may be a way around Heisenberg’s famous Uncertainty Principle, a law of the quantum world that says precise measurement is impossible. The solution could be a method developed at the universities of Rochester and Ottawa that directly measures the polarization states of light for the first time. The direct measurement technique, developed in 2011 by scientists at Canada’s National Research Council, determines the wave function – a way of determining the state of a quantum system. Such direct measurement had long been believed to be impossible on the basis that you could never fully understand a quantum system through direct observation.

Now, the investigators have discovered that it is possible to measure fundamental related variables, known as “conjugate” variables, of a quantum particle or state directly. The discovery is applicable to qubits, the building blocks of quantum information theory, as polarization states of light can be used to encode information.

“The ability to perform direct measurement of the quantum wave function has important future implications for quantum information science,” said Dr. Robert Boyd, who is Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa and professor of optics and physics at the University of Rochester. “Ongoing work in our group involves applying this technique to other systems; for example measuring the form of a ‘mixed’ (as opposed to a pure) quantum state.”

A technique called quantum tomography previously allowed researchers to measure the information contained in these quantum states, but only indirectly. Quantum tomography requires intensive postprocessing of the data, a time-consuming process not required in the direct measurement technique. Thus, in principle, the new technique provides the same information as quantum tomography but in significantly less time.

“The key to characterizing any quantum system is gathering information about conjugate variables,” said co-author Jonathan Leach, now a lecturer at Heriot-Watt University in Scotland. “The reason it wasn’t thought possible to measure two conjugate variables directly was because measuring one would destroy the wave function before the other one could be measured.”

The new method relies on a trick that “weakly” measures the first property of a system in such a way that it is not disturbed, making it possible to obtain information about the second party through “strong” measurement.

Boyd and colleagues did this by passing polarized light through two crystals of differing thicknesses: the first, a very thin crystal that “weakly” measured the horizontal and vertical polarization state; the second, a much thicker crystal that “strongly” measured the diagonal and anti-diagonal polarization state.

The position and momentum of the light were used as indicators of the polarization state. To couple the polarization to the spatial degree of freedom, the investigators used birefringent crystals: When light goes through such a crystal, there is a spatial separation introduced for different polarizations. Repeating the process several times allows accurate statistics to be built up, giving a full, direct characterization of the polarization states of the light.

The work, supported by the Canada Excellence Research Chairs Program and the DARPA InPho program, was published in Nature Photonics (doi: 10.1038/nphoton.2013.24).

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media