Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Optical fiber design uses Anderson localization

Ashley N. Rice, ashley.rice@photonics.com

The first practical application of “Anderson localization” – a Nobel Prize-winning phenomenon proposed in 1958 – has yielded a new method for transmitting light through optical fibers.

Data transmission through conventional optical fibers – in which only one spatial channel of light traverses the fiber – is the backbone of the Internet. But these single-core fibers are reaching the limits of their information-carrying capacity, according to Dr. Arash Mafi, an assistant professor of electrical engineering at the University of Wisconsin-Milwaukee. To overcome this limitation, Mafi and doctoral student Salman Karbasi collaborated with Karl W. Koch of Corning Inc. in Corning, N.Y., to propagate multiple optical beams in a single optical fiber strand.


Arash Mafi (left), assistant professor of electrical engineering, confers with his doctoral student Salman Karbasi, who designed an optical fiber that traps a beam of light traversing an optical fiber in a unique way. The discovery could usher in the next generation of data transmission methods.


They harnessed Anderson localization to create an optical fiber with a strong scattering mechanism that traps the beam of light as it traverses the fiber. The work has potential in next-generation high-speed communications and biomedical imaging, but it also opens the door for more uses of Anderson localization in technology.

Anderson localization is named after physicist Philip W. Anderson, who theoretically observed the curious containment of electrons in a highly disordered medium, an observation for which he shared the 1977 Nobel Prize in physics – but one that is still under investigation.

The fiber design Karbasi created consists of two randomly distributed materials, which scatter the photons. The fiber’s disordered interior causes a beam of light traveling through it to freeze laterally. The output light can follow any shift in the entry point’s location as it moves around on the cross section of the fiber.

Karbasi said that his theoretical calculations indicated that the proper fiber design would take advantage of Anderson localization.

“We designed our fiber so that it provides more physical places where the light can propagate,” he said.

The collaborators are now applying the technique to form and transmit images. The research appeared in Optics Letters (doi: 10.1364/OL.37.002304).

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media