Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Tapping Solar’s Full Potential

The realization of solar cells’ full potential may be a little closer, thanks to newly created large sheets of nanotextured silicon microcell arrays. The discovery holds the promise of making solar cells lightweight, bendable, more efficient and easily mass-produced.

Converting sunshine into electricity is not a difficult process, but the lack of a national solar cell network reveals that much of the difficulty lies in doing so efficiently and on a large scale.


A printed cell. Images courtesy of the University of Central Florida.


But a team from the University of Illinois at Urbana-Champaign (UIUC) and the University of Central Florida in Orlando may be one step closer. The group used a light-trapping scheme based on a nanoimprinting technique in which a polymeric stamp mechanically embosses a nanoscale pattern onto the solar cell without additional complex lithographic steps. This approach provides the flexibility that researchers have been searching for, making the design ideal for mass manufacturing, said UCF assistant professor Debashis Chanda, lead researcher of the study.

Previously, scientists had suggested designs that showed higher rates of sunlight absorption, but how efficiently that sunlight was converted into electrical energy was unclear, Chanda said. This study demonstrates that the investigators’ light-trapping scheme offers higher electrical efficiency in a lightweight, flexible module.

The team believes that this technology could someday lead to solar-powered homes fueled by cells that are reliable and provide stored energy for hours without interruption.


Debashis Chanda helped create large sheets of nanotextured silicon microcell arrays that hold the promise of making solar cells lightweight, more efficient, bendable and easy to mass produce. 


Chanda, who joined UCF in the fall of 2012 from UIUC, has joint appointments at the Nanoscience Technology Center and the College of Optics and Photonics (CREOL). He has published multiple articles on light-matter interactions and metamaterials. For some of his pioneering works, Chanda was awarded a Department of Energy solar innovation award and a Natural Sciences and Engineering Research Council award, among others. He also earned a National Science Foundation Summer Institute Fellowship this year.

Other researchers on the project include Ki Jun Yu, Li Gao, Jae Suk Park, Yi Ri Lee, Christopher J. Corcoran, Ralph G. Nuzzo and John A. Rogers from UIUC.

The study's findings are featured in the November issue of Advanced Energy Materials.

For more information, visit: www.ucf.edu



Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media