Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Mathematical Model Based on Maxwell’s Equations Leads to Discovery of New Lightwave

Equations developed by physicist James Clerk Maxwell have helped to reveal how crystals can be manipulated to produce a distinctive form of lightwave. Researchers from the University of Edinburgh and Pennsylvania State University made the discovery by analyzing how light waves interact with certain naturally occurring or man-made crystals.

The researchers found that a previously unknown type of lightwave, recently named the Dyakonov-Voigt wave, was produced at the interface where the crystals meet another material, such as oil or water. Dyakonov-Voigt waves can be produced only by using certain types of crystals whose optical properties depend on the direction in which light passes through them.

Dyakonov-Voigt waves decay as they move away from the interface and travel only in a single direction. Other types of so-called surface waves decay more quickly and travel in multiple directions.

“Dyakonov-Voigt waves represent a step forward in our understanding of how light interacts with complex materials and offer opportunities for a range of technological advancements,” researcher Tom Mackay said.

The research was published in Proceedings of the Royal Society A (https://doi.org/10.1098/rspa.2019.0317).  

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media