Search
Menu
Lumencor Inc. - Power of Light 4-24 LB

Proteins Used in Nanoscale Templates

Facebook X LinkedIn Email
Anne Fischer Lent

The future of electronic and photonic devices will be based on two-dimensional arrays of quantum dots, according to a team of researchers. The scientists, based at NASA Ames Research Center in Moffett Field, Calif., the SETI Institute in Mountain View, Calif., and Argonne National Laboratory in Illinois, have demonstrated the use of synthetic or biological materials to fabricate nanoscale ordered arrays of metal and semiconductor quantum dots. Devices produced from quantum dots may form the foundation of smaller, more efficient electronic and photonic devices.

The researchers discovered that by genetically engineering a protein, it self-assembled into regular double-ring structures known as chaperonins. They now have demonstrated that these chaperonins can direct the organization of metal and semiconductor nanoparticle quantum dots into ordered arrays.

The next step in this hybrid bio/inorganic approach to nanoscale engineering is to wire the arrays into functional devices, such as quantum dot lasers. They also hope to tap into advances in microbial genetics to induce asymmetry within the arrays by engineering specificity for other inorganic materials into the protein sequence.
Spectrogon US - Optical Filters 2024 MR

Published: February 2003
Glossary
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
biological materialsnanoscale ordered arraysNASAquantum dotsResearch & TechnologysyntheticTech PulseTwo-dimensional arrays

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.