Search
Menu
PowerPhotonic Ltd. - Coherent Beam 4/24 LB

DARPA Funds Photonics Research Center

Facebook X LinkedIn Email
CHAMPAIGN, Ill., June 22 -- The University of Illinois (UI) at Urbana-Champaign has received a grant from the Defense Advanced Research Projects Agency (DARPA) to create a photonics research center to develop ultrafast light sources for high-speed signal processing and optical communications systems. The grant will provide $6.2 million in funding over four years.

The Hyper-Uniform Nanophotonic Technology (HUNT) Center is directed by Norman K.Y. Cheng, a professor of electrical and computer engineering and a researcher at the university's micro and nanoelectronics laboratory. UI is the lead university for the center. Partner institutions are Columbia University, the Georgia Institute of Technology and Harvard University.

"The HUNT Center's mission is to develop critical technologies -- including hyper-uniform nanophotonic fabrication methods, high-performance quantum dot arrays and ultrafast lasers -- for optoelectronic interconnects," Cheng said. "The center will address the high-performance optical switching and data routing technologies needed for flexible connections-on-demand and efficient bandwidth delivery in next-generation communications systems."

A primary focus of the center is improvement in laser technology that is now feasible due to the ultrafast light-emitting transistor, recently discovered by center researchers Milton Feng and Nick Holonyak Jr. The light-emitting transistor can modulate both electrical and optical signals simultaneously and could extend the modulation bandwidth of a semiconductor light source from 20 GHz to more than 100 GHz. Faster signal processing and information transfer would result.

The development of long-wavelength quantum-dot microcavity laser technologies would facilitate large-capacity seamless communications, Cheng said. Researchers at the center will explore ways to improve the size, distribution and optical quality of quantum dots that could be incorporated into the active region of light-emitting-transistor-based lasers and long-wavelength quantum-dot lasers. Proposed techniques include nanoscale semiconductor growth and characterization, nanopatterning, and nanostructure device design and fabrication.

For more information, visit: www.ece.uiuc.edu

PI Physik Instrumente - Fast Steering Mirrors LW 16-30 MR

Published: June 2004
CommunicationsDARPAdefenseDefense Advanced Research Projects AgencyHunt CenterHyper-Uniform Nanophotonic Technology CenterNews & Featuresphotonics research centerUniversity of Illinois at Urbana-Champaign

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.