Search
Menu
Bristol Instruments, Inc. - 872 Series High-Res 4/24 LB

Optically Active Quantum Dots Embedded in Nanowires

Facebook X LinkedIn Email
Daniel S. Burgess

Investigators at the Swiss Federal Institute of Technology in Zurich have reported the fabrication of quantum dots in nanowires that display a level of brightness an order of magnitude higher than self-assembled InAs dots. They suggest that the work may have an impact on the development of so-called quantum dot molecules for quantum information processing as well as of devices that integrate electronics and optics, particularly because the structures can be grown on silicon. The researchers produced the structures by low-pressure metallorganic vapor phase epitaxy, embedding 15-nm alloys of...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: August 2005
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    Featuresmetallorganic vapor phase epitaxynanoquantum dotssiliconspectroscopy

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.