Search
Menu
PI Physik Instrumente - Revolution In Photonics Align LW LB 3/24

Taking Nanolithography Beyond Semiconductors

Facebook X LinkedIn Email
UNIVERSITY PARK, Pa., Dec. 18, 2006 -- A chemical patterning process combines molecular self-assembly with traditional lithography to create multifunctional surfaces in precise patterns at the molecular level. It allows scientists to create surfaces with varied chemical functionalities and promises to extend lithography to applications beyond traditional semiconductors. The technique, which could have a number of practical chemical and biochemical applications, will be described in the Dec. 22 issue of the journal Advanced Materials by a team at Penn State led by Paul S. Weiss, distinguished professor of chemistry and physics,...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: December 2006
    Glossary
    lithography
    Lithography is a key process used in microfabrication and semiconductor manufacturing to create intricate patterns on the surface of substrates, typically silicon wafers. It involves the transfer of a desired pattern onto a photosensitive material called a resist, which is coated onto the substrate. The resist is then selectively exposed to light or other radiation using a mask or reticle that contains the pattern of interest. The lithography process can be broadly categorized into several...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    Advanced MaterialsBasic ScienceBiophotonicschemical filmschemical patterningindustriallithographyMicroscopymolecular self-assemblynanoNews & FeaturesPenn Statephotonicsself-assembled monolayerssemiconductors

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.