Search
Menu
Gentec Electro-Optics Inc   - Measure With Gentec Accuracy LB

Chemist Cracks Crystal Case

Facebook X LinkedIn Email
TALLAHASSEE, Fla., Oct 24, 2007 -- A chemist has cracked a case of mysterious crystal characteristics, concluding a 70-year conundrum. His complex calculations could lead to the creation of more powerful computer memories and lasers and, quite possibly, quantum computers.

Naresh S. Dalal, the Dirac Professor of Chemistry and Biochemistry at Florida State University, recently collaborated with three colleagues, Jorge Lasave, Sergio Koval and Ricardo Migoni, all of the Universidad Nacional de Rosario in Argentina, to determine why a certain type of crystal known as ammonium dihydrogen phosphate, or ADP, behaves the way it does.
ADPCrystals.jpg
Ammonium dihyrogen phosphate, or ADP, crystals, which have applications in computer memory, laser and fiber optic technology. (Image courtesy Florida State University)
"ADP was discovered in 1938," Dalal said. "It was observed to have some unusual electrical properties that weren't fully understood -- and for nearly 70 years, scientists have been perplexed by these properties. Using the supercomputer at SCRI (FSU's Supercomputer Computations Research Institute), we were able to perform in-depth computational analyses that explained for the very first time what causes ADP to have these unusual properties."

ADP, like many crystals, exhibits an electrical phenomenon known as ferroelectricity. Ferroelectric materials are analogous to magnets in that they maintain a positively charged and a negatively charged pole below a certain temperature that is characteristic for each compound.

"Ferroelectric materials can stay in a given state of charge for a long time—they retain their charge after the external electrical source is removed," Dalal said. "This has made ADP and other materials like it very useful for storing and transmitting data. ADP is commonly used in computer memory devices, fiber optic technology, lasers and other electro-optic applications."

PI Physik Instrumente - Revolution In Photonics Align LW MR3/24

What researchers found perplexing about ADP was that it often displays a very different electrical phase -- one known as antiferroelectricity. "With antiferroelectricity, one layer of molecules in a crystal has a plus and a minus pole, but in the next layer, the charges are reversed," Dalal said. "You see this reversal of charges, layer by layer, throughout the crystal."

Using the supercomputer at SCRI enabled Dalal and his colleagues to perform numerous highly complex calculations that couldn't be duplicated in a laboratory environment. For example, they were able to theoretically alter the angles of ADP's ammonium ions and then measure the effects on the crystal's electrical charge. That approach ultimately led to their solution to the seven-decade mystery.

"We found that the position of the ammonium ions in the compound, as well as the presence of stresses or defects in the crystal, determine whether it behaves in a ferroelectric or antiferroelectric manner," Dalal said. The team's research is important for two main reasons, Dalal said: "First, this allows us to further understand how to design new materials with both ferroelectric and antiferroelectric properties. Doing so could open new doors for computer memory technology -- and possibly play a role in the development of quantum computers.

"Second, our research opens up new ways of testing materials," Dalal said. "Using supercomputers, we can quickly perform tests to see how materials would react under a variety of conditions. Many such tests can't even be performed in the lab."

A paper describing the findings was published recently in the journal Physical Review Letters.

For more information, visit: www.fsu.edu

Published: October 2007
Glossary
ferroelectric
That property of particular materials that determines that they will be polarized in one direction or the other, or reversed in direction, when a positive or negative electric field is applied, remaining so until disturbed.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
ADPantiferroelectricityBasic ScienceConsumercrystalselectric chargeelectro-opticferroelectricfiber opticsindustrialLasaveMigoninanoNaresh DalalNews & Featuresphotonicsquantum computersSCRIsupercomputerLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.