Search
Menu
Zurich Instruments AG - Lock-In Amplifiers 4/24 LB

11M Electron Volts Achieved

Facebook X LinkedIn Email
UK scientists have successfully demonstrated energy recovery on the Alice (Accelerators and Lasers In Combined Experiments) advanced particle accelerator design, potentially paving the way for new accelerators using a fraction of the energy required under conventional methods.

At 2 a.m. on Dec. 13, Alice's superconducting linear accelerator accelerated electrons to 99.9% of the speed of light, creating a beam with a total energy of 11 million electron volts. This was the first time the Alice beam had been successfully transported around the entire circuit.

Alice is operated by the Science and Technology Facilities Council (STFC) at its Daresbury Laboratory in Cheshire. It is a world-class R&D prototype designed to open the way for advances in a broad range of exciting accelerator science applications.

ALice1.jpg


The Duke of Kent (left) visits ALICE at STFC Daresbury Laboratory.

Alice is the first accelerator in Europe to use the energy recovery process, which captures and re-uses the initial beam energy after each circuit. At the end of the circuit, rather than throwing out the used beam of high-energy electrons, its energy is extracted for continued use before being safely discarded at an extremely low energy.

"Energy recovery means a massive saving of power or alternatively, for the same power usage, light sources and colliders of unprecedented power and intensity,” said Susan Smith, head of the Accelerator Physics Group at STFC. “The Alice team has been working tremendously hard to demonstrate energy recovery and when we did this in the small hours of Saturday morning, it felt like Christmas had come early."

Smith said the milestone was important but more work was required to fully validate the design.

"We have proven energy recovery, but not yet quantified it. Once fully commissioned Alice will accelerate to 35 million volts, electrons will be sent round the accelerator at 99.99% of the speed of light and 99.9% of the power at the final accelerator stage will be recovered, making the power sources for the acceleration drastically smaller and cheaper and therefore economically viable," said Smith.

Keith Mason, professor and chief executive of STFC added, "This is an impressive and significant step forward for Alice. In itself, the concept of energy recovery is not new, but the application of this technique in combination with advanced accelerator technologies, such as super-conducting cavities, has exciting prospects for the future of next generation light sources and particle colliders."

For more information, visit: www.stfc.ac.uk


PI Physik Instrumente - Space Qualified Steering ROS 16-30 MR

Published: December 2008
Glossary
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
11 million electron volts35 million electron voltsAccelerator Physics Group at STFCAccelerators and Lasers In Combined Experimentsadvanced particle acceleratorALICEBasic ScienceNews & Featuresparticle collidersphotonicsScience and Technology Facilities Councilsuperconducting linear acceleratorLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.