Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Incandescent Nanotube Lamp
May 2009
LOS ANGELES, Calif., May 7, 2009 – In an effort to explore the boundary between thermodynamics and quantum mechanics – two fundamental, yet seemingly incompatible theories of physics – a team from the UCLA Department of Physics and Astronomy has created the world's smallest incandescent lamp.

The team, led by Chris Regan, assistant professor of physics and astronomy and a member of the California NanoSystems Institute at UCLA, also includes Yuwei Fan, Scott Singer and Ray Bergstrom.

Thermodynamics concerns systems with many particles, while quantum mechanics works best when applied to just a few. The UCLA team is using their tiny lamp to study physicist Max Planck's black-body radiation law, which was derived in 1900 using principles now understood to be native to both theories.

Planck's law describes radiation from large, hot objects, such as a toaster, the Sun or a light bulb.

Some such radiation is of fundamental and current scientific interest; the thermal radiation left over from the Big Bang, for instance, which is called the cosmic microwave background, is described by Planck's law.

Artist's rendering of the two techniques used to "see" the carbon nanotube lamp: visible light microscopy (top) and electron microscopy (middle). The nanotube filament is 1.4 micrometers long but only 13 nanometers (about 100 carbon atoms) in diameter.

The incandescent lamp utilizes a filament made from a single carbon nanotube that is only 100 atoms wide. To the unaided eye, the filament is completely invisible when the lamp is off, but it appears as a tiny point of light when the lamp is turned on. Even with the best optical microscope, it is only just possible to resolve the nanotube's non-zero length. To image the filament's true structure, the team uses an electron microscope capable of atomic resolution at the Electron Imaging Center for Nanomachines (EICN) core lab at CNSI.

With less than 20 million atoms, the nanotube filament is both large enough to apply the statistical assumptions of thermodynamics and small enough to be considered as a molecular – that is, quantum mechanical – system.

"Our goal is to understand how Planck's law gets modified at small length scales," Regan said. "Because both the topic (black-body radiation) and the size scale (nano) are on the boundary between the two theories, we think this is a very promising system to explore."

The carbon nanotube makes an ideal filament for this experiment, since it has both the requisite smallness and the extraordinary temperature stability of carbon.

While the intensive study of carbon nanotubes only began in 1991, using carbon in a light bulb is not a new idea. Thomas Edison's original light bulbs used carbon filaments.

The UCLA research team's light bulb is very similar to Edison's, except that their filament is 100,000 times narrower and 10,000 times shorter, for a total volume only one one-hundred-trillionth that of Edison's.

This research is supported by a National Science Foundation Career award.

For more information, visit:

The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
quantum mechanics
The science of all complex elements of atomic and molecular spectra, and the interaction of radiation and matter.
thermal radiation
The emission of radiant energy in which the energy emitted originates in the thermal motion of the atoms or molecules of the source material.
Examination of the processes whereby heat energy is converted into other forms of energy.
astronomyBasic ScienceBig BangCalifornia NanoSystems Institute at UCLAcarbon nanotubeElectron Imaging Center for Nanomachines (EICN) core lab at CNSIelectron microscopeMax Plancks black-body radiation lawMicroscopynanonanotube filamentNational Science Foundation CareerNews & Featuresoptical microscopephotonicsquantum mechanicstheries of physicsthermal radiationthermodynamicsULCA Department of Physics and Astronomyworlds smallest incandescent lamp

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2017 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.