Search
Menu
Deposition Sciences Inc. - Difficult Coatings - LB - 8/23

Ion Trap Senses Force, Light

Facebook X LinkedIn Email
GAITHERSBURG, Md., July 6, 2009 – Miniature devices for trapping ions are common components in atomic clocks and quantum computing research. Now, a novel ion trap geometry demonstrated at the National Institute of Standards and Technology (NIST) could usher in a new generation of applications because the device holds promise as a stylus for sensing very small forces or as an interface for efficient transfer of individual light particles for quantum communications.

NIST_Stylus-Trap.jpg
The NIST "stylus trap" can hold a single ion (electrically charged atom) above any of the three sets of concentric cylinders on the centerline. The device could be used as a stylus with a single atom "tip" for sensing very small forces or an interface for efficient transfer of individual light particles for quantum communications. (Image: Maiwald, NIST)

The ‘stylus trap,’ built by physicists from NIST and Germany's University of Erlangen-Nuremberg, uses fairly standard techniques to cool ions with laser light and trap them with electromagnetic fields. But whereas in conventional ion traps, the ions are surrounded by the trapping electrodes, in the stylus trap a single ion is captured above the tip of a set of steel electrodes, forming a point-like probe. The open trap geometry allows unprecedented access to the trapped ion, and the electrodes can be maneuvered close to surfaces.

The researchers theoretically modeled and then built several different versions of the trap and characterized them using single magnesium ions.

The new trap, if used to measure forces with the ion as a stylus probe tip, is about one million times more sensitive than an atomic force microscope using a cantilever as a sensor because the ion is lighter in mass and reacts more strongly to small forces.

Lumencor Inc. - ZIVA Light Engine 3-24 MR

In addition, ions offer combined sensitivity to both electric and magnetic fields or other force fields, producing a more versatile sensor than, for example, neutral atoms or quantum dots. By either scanning the ion trap near a surface or moving a sample near the trap, a user could map out the near-surface electric and magnetic fields. The ion is extremely sensitive to electric fields oscillating at between approximately 100 kilohertz and 10 megahertz.

The new trap also might be placed in the focus of a parabolic (cone-shaped) mirror so that light beams could be focused directly on the ion. Under the right conditions, single photons could be transferred between an optical fiber and the single ion with close to 95 percent efficiency.

Efficient atom-fiber interfaces are crucial in long-distance quantum key cryptography (QKD), the best method known for protecting the privacy of a communications channel. In quantum computing research, fluorescent light emitted by ions could be collected with similar efficiency as a read-out signal.

The new trap also could be used to compare heating rates of different electrode surfaces, a rapid approach to investigating a long-standing problem in the design of ion-trap quantum computers.

Research on the stylus trap was supported by the Intelligence Advanced Research Projects Activity.

For more information, visit: www.nist.gov

Published: July 2009
Glossary
atomic force microscope
An atomic force microscope (AFM) is a high-resolution imaging and measurement instrument used in nanotechnology, materials science, and biology. It is a type of scanning probe microscope that operates by scanning a sharp tip (usually a few nanometers in diameter) over the surface of a sample at a very close distance. The tip interacts with the sample's surface forces, providing detailed information about the sample's topography and properties at the nanoscale. Key features and principles of...
optical fiber
Optical fiber is a thin, flexible, transparent strand or filament made of glass or plastic used for transmitting light signals over long distances with minimal loss of signal quality. It serves as a medium for conveying information in the form of light pulses, typically in the realm of telecommunications, networking, and data transmission. The core of an optical fiber is the central region through which light travels. It is surrounded by a cladding layer that has a lower refractive index than...
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
atomic clocksatomic force microscopeBasic ScienceCommunicationselectrodesfiber opticsImaginglaser lightMicroscopyNational Institute of Standards and TechnologyNews & Featuresopen trap geometryoptical fiberphotonicsphotonics.comquantum communicationsquantum computingquantum dotsquantum key cryptographyResearch & TechnologySensors & Detectorssingle magnesium ionssingle photonstylus probe tipstylus traptrapping ionsUniversity of Erlangen-NurembergLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.