Search
Menu
Vescent Photonics LLC - Lasers, Combs, Controls 4/15-5/15 LB

Electrons Lured From Graphene

Facebook X LinkedIn Email
Rutgers researchers have discovered novel electronic properties in two-dimensional sheets of carbon atoms called graphene that could one day be the heart of speedy and powerful electronic devices.

The new findings, previously considered possible by physicists but only now being seen in the laboratory, show that electrons in graphene can interact strongly with each other. The behavior is similar to superconductivity observed in some metals and complex materials, marked by the flow of electric current with no resistance and other unusual but potentially useful properties. In graphene, this behavior results in a new liquid-like phase of matter consisting of fractionally charged quasi-particles, in which charge is transported with no dissipation.

In a paper issued online by the journal Nature, physics professor Eva Andrei and her Rutgers colleagues note that the strong interaction between electrons, also called correlated behavior, had not been observed in graphene in spite of many attempts to coax it out.

ElectronsGraphene.jpg
Graphene sample with electrodes, fabricated using electron beam lithography. (Image: Adina Luican)

This led some scientists to question whether correlated behavior could even be possible in graphene, where the electrons are massless (ultra-relativistic) particles like photons and neutrinos. In most materials, electrons are particles that have mass.

“Our work demonstrated that earlier failures to observe correlated behavior were not due to the physical nature of graphene,” said Eva Andrei, physics professor in the Rutgers School of Arts and Sciences. “Rather, it was because of interference from the material which supported graphene samples and the type of electrical probes used to study it.”

This finding should encourage scientists to further pursue graphene and related materials for future electronic applications, including replacements for today’s silicon-based semiconductor materials. Industry experts expect silicon technology to reach fundamental performance limits in a little more than a decade.

The Rutgers physicists further describe how they observed the collective behavior of the ultra-relativistic charge carriers in graphene through a phenomenon known as the fractional quantum Hall effect (FQHE). The FQHE is seen when charge carriers are confined to moving in a two-dimensional plane and are subject to a perpendicular magnetic field. When interactions between these charge carriers are sufficiently strong, they form new quasi-particles with a fraction of an electron’s elementary charge. The FHQE is the quintessential signature of strongly correlated behavior among charge-carrying particles in two dimensions.

Videology Industrial-Grade Cameras - NEW 2MP Camera 2024 MR

The FHQE is known to exist in semiconductor-based, two-dimensional electron systems, where the electrons are massive particles that obey conventional dynamics versus the relativistic dynamics of massless particles. However, it was not obvious until now that ultra-relativistic electrons in graphene would be capable of exhibiting collective phenomena that give rise to the FHQE. The Rutgers physicists were surprised that the FHQE in graphene is even more robust than in standard semiconductors.

Scientists make graphene patches by rubbing graphite – the same material in ordinary pencil lead – onto a silicon wafer, which is a thin slice of silicon crystal used to make computer chips. Then they run electrical pathways to the graphene patches using ordinary integrated circuit fabrication techniques. While scientists were able to investigate many properties of the resulting graphene electronic device, they were not able to induce the sought-after fractional quantum Hall effect.

Andrei and her group proposed that impurities or irregularities in the thin layer of silicon dioxide underlying the graphene were preventing the scientists from achieving the exacting conditions they needed. Postdoctoral fellow Xu Du and undergraduate student Anthony Barker were able to show that etching out several layers of silicon dioxide below the graphene patches essentially leaves an intact graphene strip suspended in mid-air by the electrodes. This enabled the group to demonstrate that the carriers in suspended graphene essentially propagate ballistically without scattering from impurities.

Another crucial step was to design and fabricate a probe geometry that did not interfere with measurements as Andrei suspected earlier ones were doing. These proved decisive steps to observing the correlated behavior in graphene.

In the past few months, other academic and corporate research groups have reported streamlined graphene production techniques, which will propel further research and potential applications.

Andrei’s collaborators were Xu Du, now on faculty at Stony Brook University; Ivan Skachko, a postdoctoral fellow; Fabian Duerr, a master’s student; and Adina Luican, a doctoral student.

The research was supported by the Department of Energy, the National Science Foundation, the Institute for Complex Adaptive Matter and Alcatel-Lucent.

For more information, visit: www.rutgers.edu  




Published: October 2009
Glossary
graphene
Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure: Graphene...
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
silicon dioxide
An abundant material found in the form of quartz and agate and as one of the major constituents of sand. The silicates of sodium, calcium, and other metals can be readily fused, and on cooling do not crystallize, but instead form the familiar transparent material glass.
carbon atomscorrelated behaviorelectron beam lithographyelectrons in grapheneEva AndreiFQHEfractional quantum Hall effectgrapheneindustrialmassless electronsmassless particlesNews & Featuresphotonicsphotonics.comquasi-particlesResearch & Technologysilicon dioxidesilicon-based semiconductor materialssuperconductivityultra-relativistic dynamics

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.