Search
Menu
Hamamatsu Corp. - Earth Innovations LB 2/24

Pushing the boundaries in live-cell light microscopy

Facebook X LinkedIn Email
Joel S. Silfies, Nikon Instruments Inc.

Ever since Dutch scientist Antonie van Leeuwenhoek first described the cellular world in the 1660s, the disciplines of biology and physics have been pushing each other to design better tools and methods for exploring the microscopic living world. Cutting-edge questions posed by biologists push designers, engineers and physicists to discover and design new microscopy tools to explore biological questions. New microscopy tools and techniques allow biologists to ask questions that previously were impossible to answer. This article will explore some of the innovative microscopy tools that...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2010
    Glossary
    detector
    1. A device designed to convert the energy of incident radiation into another form for the determination of the presence of the radiation. The device may function by electrical, photographic or visual means. 2. A device that provides an electric output that is a useful measure of the radiation that is incident on the device.
    focus
    1. The focal point. 2. To adjust the eyepiece or objective of a telescope so that the image is clearly seen by the observer. 3. To adjust the camera lens, plate, or film holder so that the image is rendered distinct. 4. To move an entire microscope body tube relative to a specimen to obtain the sharpest possible image.
    galvanometer
    An instrument for detecting or measuring small electric currents.
    infrared
    Infrared (IR) refers to the region of the electromagnetic spectrum with wavelengths longer than those of visible light, but shorter than those of microwaves. The infrared spectrum spans wavelengths roughly between 700 nanometers (nm) and 1 millimeter (mm). It is divided into three main subcategories: Near-infrared (NIR): Wavelengths from approximately 700 nm to 1.4 micrometers (µm). Near-infrared light is often used in telecommunications, as well as in various imaging and sensing...
    magnification
    The ratio of the size of the image of an object to that of the object. The ratio of the linear size of the image to that of the object is lateral magnification. Angular magnification is the ratio of the apparent angular size of the image observed through an optical device to that of the object viewed by the unaided eye. Longitudinal magnification is the ratio of the longitudinal or axial dimension of an image to the corresponding dimension of the object.
    microscope
    An instrument consisting essentially of a tube 160 mm long, with an objective lens at the distant end and an eyepiece at the near end. The objective forms a real aerial image of the object in the focal plane of the eyepiece where it is observed by the eye. The overall magnifying power is equal to the linear magnification of the objective multiplied by the magnifying power of the eyepiece. The eyepiece can be replaced by a film to photograph the primary image, or a positive or negative relay...
    objective
    The optical element that receives light from the object and forms the first or primary image in telescopes and microscopes. In cameras, the image produced by the objective is the final image. In telescopes and microscopes, when used visually, the image formed by the objective is magnified by an eyepiece.
    phototoxicity
    Phototoxicity refers to the harmful effects caused by exposure to light, particularly intense or ultraviolet (UV) light, on living cells or organisms. This phenomenon is often associated with the interaction of light with certain substances, known as photosensitizers, which can lead to cellular damage or death. Phototoxic reactions can occur in various biological systems, including cells, tissues, and organisms. Key points about phototoxicity include: Photosensitizers: Photosensitizers are...
    spatial resolution
    Spatial resolution refers to the level of detail or granularity in an image or a spatial dataset. It is a measure of the smallest discernible or resolvable features in the spatial domain, typically expressed as the distance between two adjacent pixels or data points. In various contexts, spatial resolution can have slightly different meanings: Imaging and remote sensing: In the context of satellite imagery, aerial photography, or other imaging technologies, spatial resolution refers to the...
    stochastic optical reconstruction microscopy
    Stochastic optical reconstruction microscopy (STORM) is a super-resolution microscopy technique that enables imaging of biological specimens at resolutions beyond the diffraction limit of conventional optical microscopy. It falls under the category of single-molecule localization microscopy (SMLM) methods. STORM was first introduced in 2006 and has since become a powerful tool in biological research for visualizing fine details of cellular structures. The key principle behind STORM involves...
    structured illumination microscopy
    Structured illumination microscopy (SIM) is an advanced optical imaging technique used in microscopy to enhance the resolution of images beyond the diffraction limit imposed by traditional light microscopy. The diffraction limit is a fundamental limitation that restricts the ability to distinguish fine details in the microscopic structures. SIM achieves improved resolution through a process of illuminating the specimen with a patterned light, typically a grid or a stripe pattern. This...
    superresolution
    Superresolution refers to the enhancement or improvement of the spatial resolution beyond the conventional limits imposed by the diffraction of light. In the context of imaging, it is a set of techniques and algorithms that aim to achieve higher resolution images than what is traditionally possible using standard imaging systems. In conventional optical microscopy, the resolution is limited by the diffraction of light, a phenomenon described by Ernst Abbe's diffraction limit. This limit sets a...
    3-DacquisitionsAntonie van LeeuwenhoekBasic SciencebiologyBiophotonicscell behaviorcell damagecellularconfocal imagingcoverslip interfacedetectorFeaturesfixed array detectorfluorescent moleculesfocusfocus stabilitygalvanometerilluminatorImagingincubationindustrialinfraredIR illuminatorJoel S. Silfieslaser scannerlenseslight microscopelive-cell light microscopyliving cellsmagnificationmicroscopeMicroscopymirrorsNikonNikon Instrumentsobjectiveobjective lensoptical offset lensOpticsPALMPerfect Focus SystemPFSphotoactivated localization microscopyPhototoxicityphysicspixelspoint scanning confocalssample vesselscanning mirrorSensors & DetectorsSIMspatial resolutionspinning diskstochastic optical reconstruction microscopySTORMstructured illumination microscopysuperresolutionsuperresolution systemZ displacement

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.