Search
Menu
Videology Industrial-Grade Cameras - Custom Embedded Cameras LB 2024

New Ultrathin Solar Blind EUV Imager

Facebook X LinkedIn Email
SAN FRANCISCO, Dec. 14, 2010 — At the International Electron Devices Meeting this week, the Interuniversity Microelectronics Centre (IMEC) presented an ultrathin hybrid AlGaN-on-silicon extreme ultraviolet (EUV) imager with a 10-µm pixel-to-pixel pitch. The wide-bandgap AlGaN provides insensitivity to visible wavelengths and enhanced UV radiation hardness compared to silicon. Backside illumination in a hybrid design was used to achieve the very small pitch. The novel imager shows an excellent detection down to a wavelength of 1 nm.

Ultraviolet detection is of particular interest for solar science, EUV microscopy and advanced EUV lithography tools. Sensors using wide-bandgap materials overcome the drawbacks of silicon-based sensors such as their sensitivity to UV radiation damage and the need for filters to block the unnecessary visible and infrared radiation.

IMEC’S backside-illuminated EUV imager is based on a state-of-the-art hybrid design integrating an AlGaN sensor on a silicon readout chip. A submicron-thick AlGaN layer was grown on a Si(111) wafer using molecular beam epitaxy and a focal plane array of 256 × 256 pixels with a 10-μm pitch was processed. Each pixel contains a Schottky diode optimized for backside illumination. A custom read-out chip, based on capacitance transimpedance amplifiers, was fabricated in 0.35-µm CMOS technology. The AlGaN wafer and read-out chip were postprocessed with indium solder bumps also with 10-µm pitch, achieving excellent uniformity. The focal plane array and read-out chip were assembled using flip-chip bonding and subsequently the silicon substrate was locally removed to enable backside illumination of the active AlGaN layer. Finally, the imager was packaged and wire-bonded.

These results were obtained in collaboration with Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications/Centre National de la Recherche Scientifique (CRHEA/CNRS) of France and the Royal Observatory of Belgium in the framework of the BOLD project of the European Space Agency.

For more information, visit: www2.imec.be



Meadowlark Optics - Building system MR 7/23

Published: December 2010
Glossary
bandgap
In semiconductor physics, the term bandgap refers to the energy range in a material where no electronic states are allowed. It represents the energy difference between the valence band, which is the highest range of energy levels occupied by electrons in their ground state, and the conduction band, which is the lowest range of unoccupied energy levels. The bandgap is a crucial parameter in understanding the electrical behavior of semiconductors and insulators. Here are the key components...
extreme ultraviolet
Extreme ultraviolet (EUV) refers to a specific range of electromagnetic radiation in the ultraviolet part of the spectrum. EUV radiation has wavelengths between 10 and 124 nanometers, which corresponds to frequencies in the range of approximately 2.5 petahertz to 30 exahertz. This range is shorter in wavelength and higher in frequency compared to the far-ultraviolet and vacuum ultraviolet regions. Key points about EUV include: Source: EUV radiation is produced by extremely hot and energized...
AlGaN-on-siliconAmericasbandgapCaliforniaCentre de Recherche sur lHétéro-Epitaxie et ses ApplicationsCentre National de la Recherche ScientifiqueCMOSCNRSCRHEAenergyEuropeEuropean Space AgencyEUVEUV lithographyEUV microscopyextreme ultravioletFranceimagersImagingIMECindustrialInternational Electron Devices MeetingInteruniversity Microelectronics CentreMicroscopyResearch & TechnologyRoyal Observatory of BelgiumSensors & Detectorssolar science

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.