Search
Menu
Meadowlark Optics - SEE WHAT

Tiny Switch Flipped with Light

Facebook X LinkedIn Email
Nanomechanical resonators can operate at amplitudes much higher than previously thought — a breakthrough in optomechanics that could have implications for future communications and sensing technologies.


(Image: Wolfram Pernice, Mahmood Bagheri, Menno Poot and Hong Tang of Yale University)


“We can flip a tiny switch with light,” said Hong Tang, associate professor of electrical engineering at Yale School of Engineering & Applied Science and the principal investigator of the new study.

Amplitude refers to vibration range. Achieving high amplitudes in traditional nanoscale mechanical systems has proved difficult because reducing a resonator’s dimensions generally limits how much the resonator can move. Tang’s team shows a way of overcoming the performance limitations of conventional systems.

The operating principle is similar to the laser cooling technique used in atomic physics. “One can control the motion of a mechanical structure, amplify or cool its vibrations, just by controlling the wavelength of laser light,” said Mahmood Bagheri, lead author of the study and the postdoctoral associate in Tang’s lab.


Yale engineers recently demonstrated that nanomechanical resonators can operate at much higher amplitudes than previously thought. (Image: Yale School of Engineering & Applied Science)

The team also demonstrated that a tiny silicon structure within an optomechanical system, in which the force of light is used to control mechanical devices, can effectively store information without the aid of steady power supply — thus serving as a mechanical memory device.

Among other benefits, optomechanical memory devices can withstand harsher environments than electronic or magnetic memory devices without losing data. Future technologies containing similar high-amplitude optomechanical resonators might be less sensitive to environmental conditions, such as variations in temperature or radiation. At the same time, high-amplitude resonators might enable more accurate and robust measuring devices.

The new study appears online in the journal Nature Nanotechnology.

For more information, visit: www.yale.edu  

Spectrogon US - Optical Filters 2024 MR

Published: October 2011
Glossary
laser cooling
A process and method by which manipulation and orientation of a given number of directed laser beams decreases the motion of a group of atoms or molecules such that their internal thermodynamic temperatures reach near absolute zero. The 1997 Nobel Prize in Physics was awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips for the development of methods to cool and trap atoms with laser light.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
AmericasamplitudeBasic ScienceCommunicationsConnecticutHong Tanglaser coolingMahmood Bagherinanonanomechanical resonatorsOpticsoptomechanical memory devicesoptomechanicsResearch & Technologysensingswitch flipped with lightvibrationsYale UniversityLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.