Search
Menu
PowerPhotonic Ltd. - Coherent Beam 4/24 LB

Tunable optical filter uses nanoantennas

Facebook X LinkedIn Email
Ashley N. Paddock, [email protected]

A new tunable color filter based on optical nanoantennas can precisely control color output, enabling its use for display and bioimaging applications and for marking currency.

By precisely controlling the shape of the nanoantennas, engineers at Harvard School of Engineering and Applied Sciences (SEAS) have created a controllable color filter that is tuned to react differently, depending on the color and polarization, said Tal Ellenbogen, a postdoctoral fellow at SEAS. The investigators dubbed the filter a “chromatic plasmonic polarizer.”


To demonstrate their work, Kenneth B. Crozier and his colleagues created a plate of chromatic plasmonic polarizers that spells “LSP.” Under the light of different polarizations, the letters and the background change color. The image at far right shows the antennas themselves, as viewed through a scanning electron microscope.


Conventional RGB filters that are used to create color in televisions and monitors have one fixed output color and create a broader palette of hues through blending, an unnecessary step for these filters.

“Instead of changing the polarization of light to control the intensity of each of the spatially separated red, green and blue parts of the pixel, we will change the polarization to get the desired output color,” Ellenbogen said.

To achieve this, a separate mechanism to control the brightness, such as a white LED, is needed for each pixel, he explained.

“Using chromatic plasmonic polarizers, we can mix two colors into one nanoantenna placed at a single location,” Ellenbogen said. “Therefore it can potentially reduce the size of the pixel and eventually lead to better display resolution.”


The color output of a new type of optical filter depends on the polarization of the incoming light. Courtesy of Tal Ellenbogen, Harvard School of Engineering and Applied Sciences.



Spectrogon US - Optical Filters 2024 MR
Because the color output of chromatic plasmonic polarizers is sensitive to the polarization of input light, he said it holds potential for bright-field polarization imaging applications, for medical, biological and general purposes.

“Some tissues, like muscle tissues, for example, can change the polarization state of the light that is transmitted through them,” he said. “This shows as a color change at the output of the chromatic plasmonic polarizer. Defects in tissue, such as cancerous tumors, for example, modify the polarization of transmitted light in different ways and, therefore, can potentially be detected by this method.”

To demonstrate the technology’s capabilities, the engineers used nanoparticles to make the letters “LSP,” short for localized surface plasmon. With unpolarized light or with light that is polarized at 45°, the letters are invisible. In polarized light at 90°, the letters appear vibrant yellow with a blue background, and at 0 degrees, the color scheme is reversed. Rotating the polarization of the incident light makes the colors of the letters change, shifting from yellow to blue.


Chromatic plasmonic polarizers show polarization rotation by a plastic film.


“So far, we have demonstrated the concept of chromatic plasmonic polarizers based on 2-D nanoantenna structures,” Ellenbogen said. “We have ideas for using the third dimension to extend the functionality of the devices and to create chromatic plasmonic polarizers based on metal apertures or more complex nanostructures.”

The researchers have filed a provisional patent for their work, which appeared in the February issue of Nano Letters (dx.doi.org/10.1021/nl204257g).

Published: April 2012
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
polarization
Polarization refers to the orientation of oscillations in a transverse wave, such as light waves, radio waves, or other electromagnetic waves. In simpler terms, it describes the direction in which the electric field vector of a wave vibrates. Understanding polarization is important in various fields, including optics, telecommunications, and physics. Key points about polarization: Transverse waves: Polarization is a concept associated with transverse waves, where the oscillations occur...
AmericasBasic ScienceBiophotonicscancerous tumorschromatic plasmonic polarizerscontrollable color filterdefenseDisplaysFiltersHarvard School of Engineering and Applied SciencesHarvard SEASImagingindustrialinvisible security tagsKenneth Crozierlocalized surface plasmonLSPMassachusettsMicroscopynanoOpticspolarizationResearch & TechnologyTal EllenbogenTech PulseTV display

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.