Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Self-Assembling Particles Could Advance Optics
Nov 2012
CAMBRIDGE, Mass., Nov. 2, 2012 — Microparticles engineered to self-assemble spontaneously, much as atoms form into molecules, could lead to enhanced optical displays and speedier computer chips, investigators say.

The new particles, 1/100th the diameter of human hair, were crafted by altering the architecture of colloids — small particles found suspended in liquid and dispersed in common items such as paint, milk, glass and porcelain. The research, performed by scientists at New York University, Harvard School of Engineering & Applied Sciences, Harvard physics department and Dow Chemical Co., appeared in Nature (doi: 10.1038/nature11564).

Scientists have created new kinds of particles, 1/100th the diameter of a human hair, that spontaneously self-assemble into structures resembling molecules. Illustration courtesy of Yufeng Wang and Yu Wang.

Researchers have built rudimentary colloid structures previously; however, they have been limited in their ability to design and assemble these particles into complex 3-D shapes because colloids lack the directional bonds needed to control particle self-assembly and maintain structural integrity.

“What this method aimed to do was to use nature’s properties for atoms and apply them to the colloidal world,” said NYU chemistry professor Marcus Weck.

“Chemists have a whole periodic table of atoms to choose from when they synthesize molecules and crystals,” said Vinothan Manoharan, associate professor of chemical engineering and physics at Harvard. “We wanted to develop a similar 'construction set' for making larger-scale molecules and crystals.”

The team members engineered chemical “patches” that can form directional bonds. To establish bonding capabilities on the patches, they used single strands of DNA to organize small particles. The DNA served as the glue to which particle patches could adhere. These bonds can be manipulated to create colloids of a specific color, size, chemical function or electrical conductivity, leading to the production of new materials such as photonic crystals to improve optical displays and boost the speed of computer chips.

These are electron microscope images of “colloidal atoms,” micron-sized particles with patches that allow bonding only along particular directions. From left: Particle with one patch (analogous to a hydrogen atom); two, three, four (analogous to a carbon atom); five, six and seven patches. Courtesy of Vinothan N. Manoharan and David J. Pine.

"What this means is we can make particles that attach only at the patches, and then we can program them so only specific kinds of particles attach at those patches," said David Pine, an NYU physics professor. "This gives us tremendous flexibility to design three-dimensional structures."

For more information, visit:

For another take on self-assembling nanomaterials, see: Nanorope Advances Self-assembling Nanomaterials

To find out about using nanoparticles and DNA for nano-optics, see: DNA Origami Nanolenses to Visualize Single Molecules

The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
3-D structuresadvanced opticsAmericasBasic Sciencechemical patchescolloidscomputer chipsConsumerDavid Pinedirectional bondsDNADow Chemical Co.Harvard School of Engineering & Applied ScienceHarvard SEASMarcus WeckMassachusettsmicroparticlesMicroscopyNew York UniversityNYUoptical displaysopticsphotonicsResearch & Technologyself-assembling particlesspontaneous self assemblyVinothan Manoharan

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.