Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Microimplant Controls Nerve Cells with a Laser
Jan 2013
FREIBURG, Germany, and BASEL, Switzerland, Jan. 31, 2013 — A microimplant that can genetically modify specific nerve cells, control them with light stimuli and measure their activity simultaneously could pave the way for completely new experiments in neurobiology.

In optogenetics, genes from certain species of algae are inserted into the genome of another organism, for instance a mouse, and when shined with a laser light, provide electrically charged particles in a nerve cell’s membrane that can allow neuroscientists to control the neural activity.

Scientists from the University of Freiburg have built a microimplant that uses a laser to control individual nerve cells. The polymer-based neural probe with platinum electrodes for the measurement of electrical signals, an injection channel for fluids (rectangular openings) and a waveguide for optical stimulation. Courtesy of IMTEK/University of Freiburg.

The 3-in-1 tool developed by Birthe Rubehn and her colleagues makes this principle possible and practical. The device, at its tip only one-fourth of a millimeter wide and one-tenth of a millimeter thick, was constructed on the basis of polymers, special plastics whose safety for implantation into the nervous system has been proved.

Initial experiments in which prototypes were implanted into mice were successful: The team was able to influence the activity of nerve cells in the brain in a controlled manner by means of laser light pulses.

Unlike probes developed so far, the microimplant is capable of injecting substances necessary for genetic modification, emitting light for the stimulation of the nerve cells and measuring the effect through various electrical contacts all at once.

In addition to optimizing the technique for serial production, the scientists plan to develop a second version whose injection channel dissolves over time, reducing the implant’s size even further.

The implant prototype was detailed in Lab on a Chip (doi: 10.1039/C2LC40874K).  

For more information, visit:

A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of cells...
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2017 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.