Search
Menu
Alluxa - Optical Coatings LB 8/23

Solar Cell Material Made in the Microwave

Facebook X LinkedIn Email
SALT LAKE CITY, May 13, 2013 — Most people use microwaves to reheat leftovers, and some even experiment with marshmallows, inflating them like a balloon; but what if you could use the same home oven to make solar cells? University of Utah metallurgists have done just that, cooking up a nanocrystal semiconductor — known as CZTS for copper, zinc, tin and sulfur — in just 18 minutes in an old microwave being discarded by the Department of Metallurgical Engineering. They believe the semiconductor, which uses cheap, abundant and less toxic metals than other semiconductors, could lead to more efficient...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2013
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    quantum confinement
    Quantum confinement refers to the phenomenon in quantum mechanics where the motion of charge carriers, such as electrons or holes, is restricted to a region of space that is smaller than their wavelength. This confinement occurs in nanoscale structures, such as semiconductor nanoparticles or quantum dots, where the dimensions of the structure are comparable to or smaller than the de Broglie wavelength of the charge carriers. The de Broglie wavelength is an important concept in quantum...
    AmericasBasic ScienceCoatingsConsumerCZTSenergygreen photonicsmetallurgistsMichael FreeMicroscopymicrowave ovennanonanocrystalsOpticsphotovoltaic semiconductorPrashant Sarswatquantum confinementResearch & TechnologySensors & Detectorstunable bandgapUniversity of UtahUtah

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.