Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Silicon QDs Could be Safe for Deep-Tissue Imaging

Facebook Twitter LinkedIn Email
BUFFALO, N.Y., Aug. 8, 2013 — Monkeys injected with large doses of silicon nanocrystals displayed no adverse health effects three months later, a promising step forward in the potential development of human biomedical imaging applications.

The University at Buffalo (UB) study with nonhuman primates suggests that the silicon nanocrystals, or quantum dots, may be a safe tool for diagnostic imaging in humans. The nanocrystals absorb and emit light in the near-IR, making them preferable over traditional fluorescence-based techniques for seeing deeper into tissue.

Bright-light emission from silicon quantum dots in a cuvette. The image is from a camera that captures the near-IR light that the quantum dots emit. The light emission shown is a pseudo color, as near-IR light does not fall in the visible spectrum. Courtesy of Folarin Erogbogbo. 

“Quantum dots, or nanocrystals, are very, very promising for biomedical imaging applications, but everyone’s worried about the toxicity and what will happen to them if they degrade,” said research assistant professor Folarin Erogbogbo, co-lead author of the study. “Silicon nanocrystals can be the solution to that because they don’t contain materials like cadmium that are found in other quantum dots, and are generally considered to be nontoxic.”

The researchers tested the silicon quantum dots in rhesus macaques and mice, injecting each animal with 200 mg of the particles per kilogram of the animal’s weight. Blood tests taken for three months afterward showed no signs of toxicity in either animal, although the mice experienced inflammation and the spotty death of liver cells as a result of the silicon crystals gathering and remaining in their livers and spleens; the monkeys’ organs, however, remained normal.

Researchers capped the surface of the quantum dots with organic molecules to keep the crystals from degrading too fast, which could help explain the lack of toxicity found in the animals’ blood.

The study, a collaboration between UB, Chinese People’s Liberation Army General Hospital in China, San Jose State University, Nanyang Technological University in Singapore, and Korea University in South Korea, is part of a larger body of research investigating the effect of various nanoparticles in animal models.

The study was published in ACS Nano (doi: 10.1021/nn4029234).  

For more information, visit:

Aug 2013
quantum dots
Also known as QDs. Nanocrystals of semiconductor materials that fluoresce when excited by external light sources, primarily in narrow visible and near-infrared regions; they are commonly used as alternatives to organic dyes.
AmericasAsia-Pacificbiomedical imagingBiophotonicscamerasdeep-tissue imagingimagingMaterials & Chemicalsmicenanocrystalsquantum dotsResearch & Technologyrhesus macaquessiliconUBUniversity at Buffalo

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.