Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Soliton Behavior Observed in Silicon Photonics

Photonics Spectra
Apr 2014
SYDNEY, Jan. 21, 2014 — A breakthrough in silicon photonics could shape the design of future integrated optical communications systems.

An international research team based at the University of Sydney has observed an on-chip soliton compression in a silicon photonic crystal for the first time.

Under optimal conditions, the behavior of solitons in silicon is similar to that in a glass media, such as optical fibers. However, the composition of a silicon waveguide can cause distortion. Until now, this had prevented soliton behavior from being observed in silicon photonic crystals.

Soliton propagation occurs at the micron scale, so these findings could lead to the miniaturization of optical components featuring soliton-based functionality in integrated silicon photonic chips.

“Our experiments will inform the ongoing push to develop optical circuits in CMOS-compatible materials such as silicon for on-chip communication,” said Chad Husko at the university. 

An understanding of solitons in optical fibers played a key role in the development of long-haul optical telecommunications, researchers say, and continues to inform how terabits of data are sent.

The study is published in Nature Communications.

For more information, visit

fiber opticsoptical fibersopticsphotonic crystalsResearch & TechnologysiliconTech PulseUniversity of SydneysolitonsChad Huskoon-chip soliton compressionnonlinear waves

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!