Search
Menu
AdTech Ceramics - Ceramic Packages 1-24 LB

Slow Light: Moving Out of the Lab

Facebook X LinkedIn Email
Dr. Michael E. Holmes, Toptica Photonics Inc., and Mohammad Mirhosseini and Dr. Robert Boyd, University of Rochester

When put into practical use, slow-light-enhanced technologies will improve the performance of photonic networks and optical sensors. Photonic crystals will play a key role in the transition, as they hold promise for integration into nanophotonic circuits. Slow light enables the modification of the group velocity of photons in a controllable fashion. Although still a valuable research tool for physicists, slow light is slowly moving out of the research laboratory and into practical applications. Slow-light-enhanced technologies are expected to improve the performance of photonic networks...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: July 2014
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonic crystals
    Photonic crystals are artificial structures or materials designed to manipulate and control the flow of light in a manner analogous to how semiconductors control the flow of electrons. Photonic crystals are often engineered to have periodic variations in their refractive index, leading to bandgaps that prevent certain wavelengths of light from propagating through the material. These bandgaps are similar in principle to electronic bandgaps in semiconductors. Here are some key points about...
    waveguide
    A waveguide is a physical structure or device that is designed to confine and guide electromagnetic waves, such as radio waves, microwaves, or light waves. It is commonly used in communication systems, radar systems, and other applications where the controlled transmission of electromagnetic waves is crucial. The basic function of a waveguide is to provide a path for the propagation of electromagnetic waves while minimizing the loss of energy. Waveguides come in various shapes and sizes, and...
    AmericasCommunicationsConsumerdefenseEITFeaturesfiber opticsindustrialLight SourcesMaterialsMicroscopynanoOpticsphotonic crystalsspectroscopyWaveguideGBP

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.