Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

‘Metamirror’ Doubles Incident Light Frequency

Facebook Twitter LinkedIn Email
A nanostructure produces nonlinear effects a million times greater than traditional, macroscale nonlinear crystals, according to a team of researchers from Texas and Germany.

This “metamirror” could enable miniaturized laser systems and enhance chemical sensing, explosives detection and biomedical research.

Incident light with intensity as small as that of a laser pointer strikes a 400-nm-thick nonlinear mirror and is reflected back at double its original frequency. Courtesy of the University of Texas at Austin.

Part of the mirror is a 400-nm-thick semiconductor structure, made up of about 100 alternating layers of indium-gallium-arsenide and aluminum-indium-arsenide, grown by molecular beam epitaxy at the Technical University of Munich.

“This kind of structure is called a coupled quantum well,” said Munich professor Dipl.-Ing. Frederic Demmerle. “Now, when we stack a further thin layer at a precisely defined distance from the first layer, we can push these electron states closer together or pull them apart, adjusting them precisely to the desired wavelength.”

A layer of gold lines the back face of the semiconductor nanostructure, and the front is covered with a plasmonic metasurface of asymmetric gold nanocrosses manufactured at the University of Texas at Austin.

The ultra-thin layers of the metamaterial were produced with this molecular beam epitaxy system. Courtesy of W. Hoffmann/Technical University of Munich.

The researchers said the structure has a nonlinear susceptibility of > 5 × 104 picometres per volt for second-harmonic generation. They demonstrated conversion of an 8 µm beam into a 4 µm beam, but said their device could be tailored to work across wavelengths from the near-infrared to the terahertz. Besides frequency doubling, the device could also be used for sum- or difference-frequency generation and four-wave mixing, the researchers said.

“This work opens a new paradigm in nonlinear optics by exploiting the unique combination of exotic wave interaction in metamaterials and of quantum engineering in semiconductors,” said Texas professor Andrea Alu.

The research was funded by the National Science Foundation, the U.S. Air Force Office of Scientific Research and the Office of Naval Research, as well as the German Research Foundation.

The work was published in Nature (doi: 10.1038/nature13455). 

For more information, visit and

Photonics Spectra
Oct 2014
Metal used in components of the crystalline semiconductor alloys indium gallium arsenide (InGaAs), indium gallium arsenide phosphide (InGaAsP), and the binary semiconductor indium phosphide (InP). The first two are lattice-matched to InP as the light-emitting medium for lasers or light-emitting diodes in the 1.06- to 1.7-µm range, and the last are used as a substrate and cladding layer.
second-harmonic generation
A process whereby two fields of the same optical frequency interact in a nonlinear material to produce a third field, which has a frequency twice that of the two input fields.
aluminumAmericasarsenicAustinBiophotonicschemicalsdefenseEuropefour-wave mixinggalliumGerman Research FoundationGermanygoldindiummetamaterialsmolecular beam epitaxynanoNational Science FoundationNaturenear-infrarednonlinear effectsnonlinear opticsnonlinearityOffice of Naval ResearchResearch & Technologysecond-harmonic generationsemiconductorsTech PulseTechnical University of MunichterahertzTexasU.S. air force office of scientific researchUniversity of Texassum-frequency generationmetamirrorcoupled quantum wellFrederic Demmerleplasmonic metasurfacenanocrossesdifference-frequency generationlasers

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.