Search
Menu
CASTECH INC - New Building the Bridge of Light

SWIR Applications and Challenges: A Primer

Facebook X LinkedIn Email
Jens Hashagen, Allied Vision Technologies GmbH

Infrared imaging opens endless possibilities for industrial, scientific and security image-processing applications. But short-wave infrared cameras must overcome the limitations of InGaAs sensor technology to provide high-quality images. Conventional imaging sensors such as CCD or CMOS have a wider sensitivity range than the human eye, especially in the near-infrared area. They reveal more than the bare eye can see. For example, an easy way to check if an infrared remote control is working is to operate it in front of a digital camera. The IR signal is visible on the image as a flash of...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2014
    Glossary
    machine vision
    Machine vision, also known as computer vision or computer sight, refers to the technology that enables machines, typically computers, to interpret and understand visual information from the world, much like the human visual system. It involves the development and application of algorithms and systems that allow machines to acquire, process, analyze, and make decisions based on visual data. Key aspects of machine vision include: Image acquisition: Machine vision systems use various...
    infrared
    Infrared (IR) refers to the region of the electromagnetic spectrum with wavelengths longer than those of visible light, but shorter than those of microwaves. The infrared spectrum spans wavelengths roughly between 700 nanometers (nm) and 1 millimeter (mm). It is divided into three main subcategories: Near-infrared (NIR): Wavelengths from approximately 700 nm to 1.4 micrometers (µm). Near-infrared light is often used in telecommunications, as well as in various imaging and sensing...
    quantum efficiency
    Quantum efficiency (QE) is a measure of the effectiveness with which a device or system, typically in the context of photonics or electronics, converts incoming photons (light) into a useful output signal or response. It is expressed as a ratio or percentage and quantifies the number of electrons or charge carriers generated in response to the incident photons. In other words, quantum efficiency provides a measure of how well a device can capture and utilize photons to produce an electric...
    Allied Vision TechnologiescamerasCCDCMOSmachine visionFiltersWafersinfrared camerasartautomotivechemicalsCoatingsEuropeFeaturesfood inspectionGoldeyeImaginginfraredLight SourcesMaterialsOpticsPeltierquantum efficiencySensors & DetectorsSWIRtextileswoodworkingwater inspectionphotosensitive arraypixel correctionJens Hashagen

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.