Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Optogenetic Method Investigated for Neuron Repair

Facebook Twitter LinkedIn Email Comments
Optogenetic Method Investigated for Neuron RepairAn optogenetics method has been used to stimulate the repair of a single neuronal circuit in zebrafish larvae. The method could have future therapeutic applications as a treatment for neuropathies in humans and other vertebrates.

Environmental insult, disease or trauma can affect the physical integrity of neuronal circuits, and the inability of many neurons to regenerate injured axons leads to irreversible neural dysfunction, said researchers from Helmholtz Zentrum München, the German research center for environmental health.

Key for the researchers' success was the messenger molecule cAMP, which is produced by the enzyme adenylyl cyclase and is known to promote axonal regrowth. Pharmacological or genetic approaches to increase intracellular levels of cAMP are often inadequate for precise neural-circuit reconstruction because their activity cannot be easily timed to specific target cells.

These shortcomings have prevented the controlled repair of predefined neurons at selected time points in whole specimens, the researchers said. Technologies to guide neuronal repair in time and space would enable studies of neural-circuit recovery with unprecedented resolution.

For their experiment, the scientist used a form of adenylyl cyclase inducible by blue light, enabling specific modulation of the production of cAMP in cells expressing this enzyme.

They applied the system to zebrafish larvae that had interrupted sensory lateralis nerves.

"When blue light was shone on severed nerves that expressed a photoactivatable adenylyl cyclase, their repair was dramatically increased," said doctoral student Yan Xiao. "While untreated nerve terminals only made synapses again in 5 percent of the cases, about 30 percent did after photostimulation."

"Our results show for the first time how the repair of a complex neural circuit in a whole animal can be promoted remotely by the use of light," said Hernán López-Schier, head of the sensory biology and organogenesis research unit at Helmholtz Zentrum München.

Mar 2016
A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of...
Research & TechnologyEuropeGermanyHelmholtz Zentrum MunchenHernan Lopez-SchieroptogeneticsBiophotonicsYan XiaobrainBioScan

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.