Search
Menu
Gentec Electro-Optics Inc   - Measure With Gentec Accuracy LB

Holographic Atomic Memory Produces Photons On Demand

Facebook X LinkedIn Email
A device that is able to generate single photons on demand in groups of several dozen or more could help scientists overcome one of the fundamental obstacles facing the construction of quantum computers. The heart of the system to generate groups of photons is a glass cell filled with hot gas vapor. Illuminating the cell with a laser results in the emission of photons with a wavelength in the infrared spectrum range. Courtesy of UW Physics/Mateusz Mazelanik. Physicists from the Faculty of Physics at the University of Warsaw (UW) have invented holographic atomic memory. Wojciech...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: February 2017
    Glossary
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    photonsphotonicshologramsholographic atomic memoryUniversity of WarsawWojciech WasilewskiMichal DabrowskiSpontaneous Parametric Down ConversionLight SourceseducationResearch & TechnologyLasersPRELUDIUMSONATAPhoQuS@UWquantum computingquantum computersquantum communicationfiber opticsTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.