Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Raman Whispering Gallery Detects Nanoparticles

Facebook Twitter LinkedIn Email
ST. LOUIS, Sept. 1, 2014 — A Raman microlaser sensor can detect and count individual particles — including viruses — as small as 10 nm.

Researchers led by Dr. Lan Yang of Washington University achieved Raman lasing in a silica microcavity or "whispering gallery".

Within the microcavity, two modes of the beam emitted by the Raman laser circulate in opposite directions. When a particle lands on the ring and scatters energy between these modes, the single Raman lasing line splits into two lasing lines with different frequencies, which can be analyzed to confirm detection.

When a nanoparticle lands on a resonator, the Raman laser circulating inside undergoes mode splitting, leading to two new lasing modes in different colors. Monitoring the frequency difference enables detecting and measuring of nanoparticles with single-particle resolution. Courtesy of J. Zhu, B. Peng, S.K. Ozdemir, L. Yang/Washington University in St. Louis. 

“Our new sensor differs from the earlier whispering gallery sensors in that it relies on Raman gain, which is inherent in silica, thereby eliminating the need for doping the microcavity with gain media to boost detection capability,” said Dr. Sahin Kaya Ozdemir, first author of the study. “This new sensor retains the biocompatibility of silica and could find widespread use for sensing in biological media.”

The technology could benefit the electronics, acoustics, biomedical, plasmonics, security and metamaterials fields, the researchers said. The work also shows the possibility of using intrinsic gain mechanisms — such as Raman and parametric gain — instead of optical dyes, rare-earth ions or quantum dots to compensate for loss in optical and plasmonic systems where dissipation hinders progress and limits applications.

The research was funded by the National Science Foundation and the U.S. Army Research Office. The research was published in the Proceedings of the National Academy of Sciences (doi: 10.1073/pnas.1408283111).

For more information, visit
Sep 2014
A small object that behaves as a whole unit or entity in terms of it's transport and it's properties, as opposed to an individual molecule which on it's own is not considered a nanoparticle.. Nanoparticles range between 100 and 2500 nanometers in diameter.
AmericasBiophotonicsLan YangnanoparticleRaman lasersResearch & TechnologySahin Kaya Ozdemirwhispering galleryWashington University in St. Louis MissouriTech PulseBioScan

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.