Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

3-D Knotted Optical Traps Created

Facebook Twitter LinkedIn Email Comments
NEW YORK, March 22, 2011 — A new technique creates extended and knotted 3-D optical traps that produce “bright” knots. The maximum of the light intensity traces out a knotted trajectory in space, allowing microscopic objects to be trapped along the path of the knot.

Discovered by physicists at New York University, the new method could enable fusion energy to become a practical power source, said the team.

Optical traps can be used to confine and manipulate small objects — ranging in size from a few nanometers to several hundred micrometers — in 3-D. They work because variations in the intensity of the light produce forces that push small objects toward bright regions. The trapping of small objects is widely used for a broad range of research applications in biophysics, condensed matter physics and medical diagnostics.

Ordinary optical traps use Gaussian laser beams that focus to a spot. The beams being used to create extended optical traps focus to curves instead.

A laser beam is imprinted with a hologram in the input pupil of an objective lens. The hologram is projected through the objective's focal plane and comes to a focus along a 3-D curve parameterized by its arc length, s. (Image: Optics Express)

Knotted traps are made by imprinting a computer-generated hologram on the wavefronts of an otherwise ordinary beam of light. NYU undergraduate student Elisabeth Shanblatt and NYU physicist David Grier used a liquid-crystal spatial light modulator to imprint a calculated pattern of phase shifts onto the light. When the modified beam was brought to a focus with a high-power lens, the region of maximum intensity took the form of a 3-D curve. This curve crossed over and through itself to trace out a knot. Moreover, the same hologram redirected the light's radiation pressure to have a component along the curve, so that the total optical force "threads the knot."

"The knotted optical force fields we created use intensity gradients to hold microscopic objects in place and phase gradients to thread them through the knot," said Shanblatt. "These optical knots are a special type of a very general class of 3-D optical traps that can be created using holographic techniques."

Ordinary optical traps have current applications in biophysics, where they are used as surgical tools and to probe the elastic properties of biomolecules, and in condensed matter physics, where they assemble nanomaterials into 3-D functional structures and gauge the forces between microscopic objects. Extended optical traps are especially handy in moving small objects such as biological cells through microfluidic lab-on-a-chip devices. And they can be used to measure very small interactions among such objects, which is helpful for medical diagnostic tests.

Perhaps the most exciting and futuristic potential application the NYU team members see for their method is creating knotted current loops of charged particles in high-temperature plasmas. This is a long-sought-after goal for developing fusion energy as a practical power source.

Knots of light solve problems of fusion energy

Fusion reactors work by slamming light atomic nuclei into each other so hard that the nuclei fuse into heavier elements, releasing lots of energy. The best way to accomplish this, Grier said, is to heat the atoms to a high enough temperature so that they can overcome all of the barriers to fusion. At these temperatures, the atoms' electrons ionize, and the gas becomes a plasma.

This is doubly good, said Grier, because you can pass large electric currents through the plasma, therefore heating it still more.

"You can also act on the currents with magnetic fields to contain the hot plasma, preventing it from destroying its physical container. These fusion plasmas are literally as hot as the core of the sun," he said.

A problem occurs when currents flowing through plasma in a fusion reactor become unstable; this is similar to what occurs when the currents flowing through the plasma in a neon sign flicker. The currents thrash around, cool the plasma, damage the container, and generally prevent the process from generating useful energy.

"If the currents in a plasma are tied into a knot, the knot can eliminate most, if not all, of these instabilities because the magnetic field lines generated by the knotted current can't pass though each other," said Grier.

Shanblatt and Grier believe that projecting a knotted optical force field into a plasma might prove to be a good way to initiate a knotted current loop. If so, the knotted current could then be ramped up by other conventional means. The result? Perhaps, a stable, high-temperature plasma capable of producing bountiful fusion energy.

For more information, visit:
Mar 2011
3-D curve3-D Knotted Optical TrapsAmericasatomsBasic ScienceBiophotonicsDavid GrierelectronsElisabeth Shanblattenergyfusion energyfusion reactorsGaussian laser beamshologramslensesNew YorkNew York Universityoptical forceoptical knotsopticsResearch & Technologylasers

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.