Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

3-D printed parts support stem cell research

Facebook Twitter LinkedIn Email Comments
Digital manufacturing company Potomac Photonics recently delivered precision 3-D printed parts to support stem cell research at Boston University.

Understanding and controlling stem cell differentiation in vitro is a major challenge because cells can interact with each other either through direct contact or by cell-secreted factors, and a more controlled microenvironment is needed to systematically elucidate the important factors that influence cell behavior, according to Boston University investigators.

A 3-D printed stencil with 0.013-in. posts. Courtesy of Potomac Photonics.

Utilizing a high-resolution 3-D printer, Potomac Photonics fabricated precision stencils to pattern seeded stem cells to grow new cells in a defined arrangement relative to each other. By preparing various stencils, the BU researchers hope to determine how the relative position of stem cells affects their differentiation efficiency and differentiated progeny.

This work, which was performed within Potomac Photonics’ Educational Manufacturing Initiative, demonstrated another novel way that 3-D printing and advanced micromanufacturing technologies are spearheading the development of innovative new applications and products.

May 2013
3-D printingBiophotonicsBoston UniversityBusinessindustrialPotomac PhotonicsRapidScanstem cell

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.