Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Accurate Reading Taken from Mini-Quantum Computer

Facebook Twitter LinkedIn Email Comments
UTRECHT, Netherlands, Oct. 4, 2011 — Scientists have taken an accurate readout from a mini-quantum computer comprising four quantum bits on a chip of diamond. The advance marks a step toward quantum computing and makes it possible to test quantum algorithms, such as teleportation, on a chip.

The researchers, from Delft University of Technology and the FOM Foundation, published their results online in Nature on Sept. 21.

Major challenges to realizing a quantum computer and the associated large-scale quantum hardware are the initialization and reading out of the minuscule quantum bits.

Electron microscope image of the diamond chip. The four quantum bits of spins (the spheres with arrows) are read out by firing a red laser light at them. Information about the state of the spins returns with the light. (Image: Delft University)

The spin rotation of both individual electrons and atomic nuclei functions as a quantum bit: left spin is a “0,” and right spin is a “1.” Atomic nuclei are highly stable quantum bits, as they scarcely interact with their surroundings. However, this property also makes it difficult to read out the state of atoms.

The team from Delft University of Technology under the leadership of FOM scientist Ronald Hanson has now solved this problem by using a captured electron as an intermediate station in the measurement.

The researchers can now determine the state (spin direction) of the electron quickly and accurately.

They do this by sending laser pulses of an accurately preset wavelength at the electron. The electron absorbs the light and transmits it again if it is in the “0” state but does nothing if it is in the “1” state.

To read out the spin direction of the atomic nuclei as well, the researchers first perform a quantum operation. The electron then gets entangled with the atomic nuclei, and the information about the atom is transferred to the electron. The researchers subsequently read out the state of the electron and from this derive the original state of the atomic nuclei.

This measurement technique is special because the measurement does not alter the state of the atomic nuclei. It is therefore an ideal way of preparing the atomic nuclei for further quantum calculations and so for use in a quantum computer.

This new readout technique for quantum bits in diamond provides the researchers with many possibilities. For example, they want to test interesting phenomena such as teleportation and multiparticle entanglement in the laboratory.

The readout also makes it possible to implement the correction of elementary quantum errors, an essential aspect of a large-scale quantum computer.

The research was supported by a Marie Curie Intra European Fellowship of the Seventh European Community Framework Programme, FOM, the European Commission (SOLID) and the Research Corporation for Science Advancement (RCSA).

For more information, visit:
Oct 2011
Basic ScienceCommunicationsDelft University of Technologydiamond chipEuropeFOM Foundationlaser pulsesMicroscopymini quantum computer readoutNatureNetherlandsquantum algorithmsquantum bit measurementquantum bit readoutquantum bitsquantum calculationsquantum computer readoutquantum computersReadoutred lasersResearch & TechnologyRonald Hansonspin direction of atomic nucleispin rotation electronsTest & Measurementlasers

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.