Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Active Alignment Is Here to Stay

Facebook Twitter LinkedIn Email Comments
Adrian C. Goding

As long as light sources, amplifiers and regenerators remain expensive, the benefits of active alignment’s lower insertion losses will continue to outweigh its costs. And are its disadvantages really so bad?
Active alignment is a ubiquitous process in fiber optic component assembly that sets the photonics industry apart from the semiconductor and electronics industries with which it is most often compared. For any company accustomed to applying the highly flexible and scalable electronics and semiconductor automation processes to photonics, the necessary evil of active alignment is certainly a frustrating bottleneck. At first glance, it seems that replacing active alignment with a passive method would represent the Holy Grail of fiber optics assembly technology.

The benefits of active alignment continue to outweigh its costs. If this gradient index lens were aligned and bonded using a state-of-the-art passive system, its insertion loss would be 10 times higher than if it were bonded actively.

The problems with active alignment are well-known: It requires source and/or detector coupling, prealignment, a capital investment in nanopositioning tools that are sufficiently robust for the factory-floor environment and much more time than is tolerated in semiconductor and electronics assembly.

Finally, although we use the term “active alignment,” the task is actually active alignment and bonding. It is really not so difficult to actively align two parts. The challenge is to epoxy, solder, fuse or laser weld those parts so that they still will be aligned after they have been shipped to the customer.

For these reasons, pigtailing via active alignment has historically been the most labor-intensive step in the fiber optic assembly process, and it remains the most difficult to automate.

But is active alignment really so problematic?

We think it is getting a bad rap. The truth is that active alignment has its advantages. It offers a tremendous cost savings because it compensates for all the sloppy tolerances that originally made it possible to fabricate the piece parts at low cost. A gradient index lens in which the optical and mechanical axes coincide within better than ±0.5 μm would be prohibitively expensive. And imagine the price tag on a pair of fiber collimators whose optical axes could be aligned to within a few microradians simply by slipping them into a precise tube.

As for its drawbacks, it is now possible to perform source and detector coupling with semiautomated or fully automated modules. The cost of the nanoalignment tools has fallen dramatically because of competitive forces and advances in technology. Alignment time is now measured in seconds instead of in minutes. And, as challenging as it may continue to be, we have made significant advances in maintaining alignment through the bonding process.

How much of a difference is there between active and passive alignment?

Simple and cheap

Consider the case of a fiber optic collimator, in which a gradient index lens must be aligned and bonded to a fiber capillary. Assuming that a state-of-the-art passive alignment system is used to align these two parts within 1 μm, the typical insertion loss would be as high as —1.5 dB. Actively performing the alignment and bonding, however, yields a typical loss of —0.1 to —0.2 dB.

Insertion loss is heavily dependent on alignment. Until light sources, amplifiers and regenerators become more economical, active alignment’s lower insertion losses will make it the preferred solution.

Active alignment enables a manufacturer to build this collimator to specifications using two relatively imprecise (and thus inexpensive) piece parts. This is in contrast to building the same collimator by passively aligning a set of optomechanically perfect — and outrageously expensive — piece parts. Moreover, building this collimator by passive alignment assumes the technology to locate, place and bond cylindrical glass components within these ±1-μm tolerances. This is a tall order even for state-of-the-art passive assembly systems because of the position feedback requirement.

By comparison, active alignment feedback is extremely simple. The feedback generated at the detector or detectors is often a single number directly related to the misalignment error — and as many as six degrees of freedom may be contributing to this error — as well as to the overall product performance (total decibel loss of the end product).

One hope for eliminating the need for position feedback in passive alignment is the use of silicon structures such as V-grooves and wells that passively mate with micron precision. However, this only shifts the burden to metrology and testing. The silicon V-groove assemblies must be tested to verify the interfiber spacing, and the final product still must be tested for insertion loss.

Easing tolerances

Of course, efforts are under way to redesign and re-engineer optical components so that they may be aligned with looser tolerances. New manufacturing methods will improve the precision of piece parts without significantly affecting their cost. Silicon optical benches will continue to be deployed in increasing numbers. There is even work focused on installing simple microelectromechanical devices or piezo actuators inside the optical components, which would greatly relax the placement tolerances and offer the additional benefit of enabling realignment over the lifetime of the component.

The driver for precise alignment is minimizing light loss, stemming from the relatively high cost of sources, amplifiers and regenerators, as well as the fiber’s inability to carry higher powers. Perhaps the introduction of extremely low cost, mass-produced amplifiers, such as semiconductor optical amplifiers, will allow for “lossy” components that are easier to align passively.

But into the foreseeable future, minimizing light loss will continue to be very important. The comparative performance of components is measured in tenths of a decibel, and the benefit of lower insertion loss continues to outweigh the costs of active alignment.

Nevertheless, as component makers seek to eliminate active alignment steps in their processes, manufacturers of precision alignment and assembly systems will adapt — offering active, passive and hybrid alignment solutions.

Meet the author

Adrian C. Goding is a director of technical sales at Adept Technology Inc. in San Jose, Calif. He holds a BS and an MS in optics from the University of Rochester in New York.

Photonics Spectra
Jan 2002
The science of measurement, particularly of lengths and angles.
FeaturesindustrialmetrologySensors & Detectors

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.