Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Algae-Inspired Polymers May Reduce Night-Vision Cost

Facebook Twitter LinkedIn Email Comments
An infrared-transmitting polymer based on common low-cost materials may lead to low-cost night-vision lenses that retain focus while imaging at variable distances. The polymer, developed by researchers from the University of Tsukuba, keeps its shape after stretching.

Designing conventional infrared night-vision lenses capable of easily changing focus from one position to another is typically difficult and costly. Without fabricating lenses to feature variable-focus capability, details that are important to capturing and understanding an image can be lost. Using a flexible polymer made from common materials is desirable for creating lower-cost, more readily available lenses.
The infrared lens is made from an elastic polymer derived from algae and plant compounds, and is capable of variable focus. Courtesy of University of Tsukuba.
The infrared lens in the researchers' system is made from an elastic polymer derived from algae and plant compounds. It is capable of variable focus. Courtesy of University of Tsukuba.

The polymer is based on sulfur and compounds derived from algae and plants. The researchers prepared it using a chemical process called inverse vulcanization, in which the constituent compounds are mixed and stirred together as they are heated. They then poured the material into a silicon mold and heated it further.

In tests to determine transparency to infrared light, the researchers determined that even a 3.3-mm-thick lens was able to transmit 10% of incoming infrared light.

“The lenses have two wavelength ranges that are infrared-transparent,” said senior author Takaki Kanbara. “No lens is completely transparent; 10% transmission is an excellent value for these materials.”

To test the lens for variable-focusing, the researchers projected an image through the lens and monitored the image that came through as the lens was elongated. Squalene and other long unsaturated hydrocarbons, which help optimize the cross-linking structure, gave the polymers the necessary elasticity.

The lens is able to return to its original shape after being stretched repeatedly by 20%. 

“The lens retained 54% of the focus variation, which is sufficient for practical uses,” said Takashi Fukuda, senior researcher at the National Institute of Advanced Industrial Science and Technology. “The lens also retained its full initial focus after contracting back to its original shape.”

The research was published in ACS Applied Polymer Materials (www.doi.org/10.1021/acsapm.0c00924).

Photonics Handbook
GLOSSARY
polymer
A material whose molecular structure consists of long chains made up by the repetition of many (usually thousands) of similar groups of atoms.
lens
A transparent optical component consisting of one or more pieces of optical glass with surfaces so curved (usually spherical) that they serve to converge or diverge the transmitted rays from an object, thus forming a real or virtual image of that object.
Research & TechnologymaterialsopticspolymerpolymersTsukuba UniversityUniversity of TsukubalenslensesAsia-Pacificalgaeinfrarednight visionnight-visionvariable focusvariable focus lenses

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.