Search
Menu
Lumencor Inc. - Power of Light 4-24 LB

Algorithms precisely predict color from OLED designs

Facebook X LinkedIn Email
Ashley N. Rice, [email protected]

OLED design processes could improve – and costs could drop – thanks to a technique that precisely calculates the color of light produced from white OLEDs.

Regarded as the light sources of the future, OLEDs are flexible and transparent light-emitting surfaces made of very low cost materials. White OLEDs consist of stacked, ultrathin layers, each emitting its own color, and all together resulting in white light. Until recently, it was not possible to predict the exact color produced by a white OLED; manufacturers had to rely on trial and error.

To predict what kind of light an OLED design will produce, researchers at Eindhoven University of Technology and Philips Research, both in the Netherlands; Dresden University of Technology in Germany; and other institutes developed computer models of the complex electronic processes in OLEDs on a molecular scale. These showed, for example, the injection of electrical charge, the creation and distribution of the excitons, and the creation from these of individual photons.


A transparent OLED made at Philips Research Aachen, seen from the rear; light is emitted from the front. New research allows the light color produced by OLEDs to be predicted precisely.


“At first we thought it would never be possible,” said Peter Bobbert, a researcher at Eindhoven University of Technology. The main difficulty was that each change in the electrical charge also influenced all the other charges, making the simulation extremely complex.

Trioptics GmbH - Worldwide Benchmark 4-24 LB

The investigators overcame the obstacle using Monte Carlo simulations – computational algorithms that rely on repeated random sampling to obtain numerical results – with nanosecond steps. They can now predict where light is produced and lost in the ultrathin layers, making it possible to optimize OLEDs so they produce the same amount of light using less power. Results from Eindhoven correspond to measurements carried out at Philips on OLEDs made at Dresden University of Technology.

The scientists expect that the efficiency can still be increased by a factor of three. Manufacturers also can use the findings to design OLEDs with specific colors. They can calculate in advance exactly how thick the different layers need to be, and how much pigment must be added to the layers.

The much shorter and less costly design process will allow the overall development costs to be reduced, leading to lower prices for the final products. “This has already been possible for a long time in the field of microelectronics, with the ability to precisely predict the behavior of integrated circuits,” Bobbert said. “Now we can do the same thing with OLEDs.”

The research was published online in Nature Materials (doi: 10.1038/nmat3622).

Published: July 2013
Dresden University of TechnologyEindhoven University of TechnologyEuropeGermanyLight SourcesMonte Carlo simulationsOLED layersOLEDsPeter BobbertPhilips ResearchResearch & TechnologyTech Pulsethe Netherlandswhite OLEDs

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.