Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
Member Exclusive

Big Data Drives Optical Networking Changes

Facebook Twitter LinkedIn Email
Facebook, Google, Microsoft and others’ unquenchable demand for bandwidth is driving innovations such as the combining of packet and dense wavelength division multiplexing technologies.


Long driven by telecom, optical networks are now being pushed by large data centers operated by Facebook, Amazon, Google, Microsoft and others. Here, runs are shorter and the emphasis is not on utility-grade reliability, a change from the telecom world. Instead, lowering the cost per bit and boosting bandwidth are of paramount importance. Suppliers have come up with new solutions, with users not waiting for standards to be finalized. Consider Facebook. Host to 1.8 billion monthly active users, the Menlo Park, Calif.-based company sees a future of higher bandwidth demands than what’s needed for text and still images. Analysts predict 75 percent of the world’s mobile data traffic will consist of video and virtual reality by 2020, noted Katharine Schmidtke, the company’s source manager for optical technology strategy. “With the onset of these new services, we need to make sure our global infrastructure is designed to handle richer content at faster speeds. To meet these current requirements and any future bandwidth demands, we’re deploying the 100G (gigabits per second or Gbps bandwidth) data center, which puts increasing pressure on the optical network,” she said. Facebook is actively working to bring about solutions that combine packet and dense wavelength division multiplexing technologies. Dubbed “Open Packet DWDM,” an advantage of this approach is that it cleanly separates software and hardware, Schmidtke said. That enables each to independently advance. Because it is based on open specifications, anyone can contribute systems, components or software. Facebook has done this and intends to continue this work, driven, in part, by self-interest.

Member Exclusive: To read the complete article, please Login or Register

Photonics Spectra
Feb 2017
lasersfiber opticsbandwidthCiscoFacebookDWDMOpen Packet DWDMMoore's LawNeoPhotonicssiliconindium phosphidegallium arsenidedata centerspine-and-leaf network architectureoptical networksCMOSsilicon photonics. VCSELvertical-cavity surface-emitting lasersFeatures

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.