Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Brain Integrates Natural, Artificial Vision to Treat Blindness

Facebook Twitter LinkedIn Email
Researchers from Bar-Ilan University and Stanford University have reported evidence indicating that the brain knows how to integrate natural and artificial vision while maintaining processing information important to vision. The research shows potential for treating macular degeneration.

An artificial retina, built from tiny electrodes smaller in width than a human hair, is able to electrically stimulate the remaining retinal cells and results in partial visual restoration.

“We used a unique projection system which stimulated either natural vision, artificial vision, or a combination of natural and artificial vision, while simultaneously recording the cortical responses in rodents implanted with a subretinal implant,” said Tamar Arens-Arad, who conducted the experiments as part of her doctoral studies.

The implant is composed of dozens of tiny solar cells and electrodes, developed by professor Daniel Palanker at Stanford University. Patients treated with the implant possess a combination of artificial central vision and normal peripheral vision. The study of the combination of artificial and natural vision may provide a better understanding of how to treat blindness.

“These pioneering results have implications for better restoration of sight in AMD patients implanted with retinal prosthetic devices and support our hypothesis that prosthetic and natural vision can be integrated in the brain. The results could also have implications for future brain-machine interface applications where artificial and natural processes co-exist,” said professor Yossi Mandel, head of Bar-Ilan University’s Ophthalmic Science and Engineering Lab and the study’s lead author.

The research was published in Current Biology (

Mar/Apr 2020
Research & TechnologyBiophotonicsBar-Ilan UniversityStanfordretinal implantartificial visionBioScan

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.