Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Chameleon Lasers

Facebook Twitter LinkedIn Email
Lasers that can easily change wavelengths are enabling new bioimaging and chemical analysis techniques.

Arnd Krueger and Ian Read

Cell biologists have long used wavelength discrimination to optically map structure and function at the cellular and subcellular level. The advent of the confocal laser scanning microscope has enabled such observations in three dimensions, close to the diffraction limit. However, the photobleaching and photodamage related to ultraviolet or visible lasers have limited their ability to produce high-quality data from live-cell samples.

Multiphoton techniques have overcome this limitation.1 Besides minimizing photodamage, multiphoton confocal laser scanning microscopy produces images with a higher signal-to-noise ratio and better spatial resolution than single-photon techniques…

Photonics Spectra
May 2001
FeaturesMicroscopywavelength discrimination

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.