Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Consortium Uses Infrared Imaging to Detect Brain Damage in Infants

Facebook Twitter LinkedIn Email Comments
BARCELONA, Spain, May 3, 2021 — Around 500,000 babies born each year develop brain damage that could be treated if caught in time; however, monitoring an infant’s brain is difficult. A device currently in development seeks to address that problem by enabling real-time monitoring of newborn babies using light.

Though MRI scans are able to provide high-quality images of the brain, the technology is often unsuitable for newborn babies, as it requires the subject to remain completely still.

The “TinyBrains” health consortium, run in conjunction with ICFO (The Institute of Photonic Sciences), is developing a wearable device that places near-infrared lasers and LEDs and EEG electrodes into a small cloth cap. The cap sends harmless light signals into the infant’s brain and works in a way similar to ultrasound. The technology is designed to grant an image of the underlying brain activity rather than just the anatomical structure. The signals consider slight drops in oxygen levels to and from the brain in real time to measure the cause of a number of neurodevelopmental disabilities. This allows them to be treated in time to prevent permanent damage.

“A staggering 500,000 people suffer unnecessary disabilities that result from congenital heart defects and other structural defects in the heart across the world, drastically affecting the life of the patient if they are not picked up soon after birth,” said TinyBrains project coordinator and ICFO professor Turgut Durduran. “At present it is tough to monitor these at-risk populations both technically, because of the lack of appropriate tools, and also ethically because consent and risks have to be taken into consideration.”

The cap’s sensors connect to a portable unit and measure the cerebral metabolic rate of oxygen — or the oxygen saturation in the blood and the concentrations of oxy- and deoxyhemoglobin — and build up a 3D color image in real time.

The work uses multiple, distinct spectroscopy techniques to measure the oxygen saturation levels in the blood, Durduran said: high-density near-infrared spectroscopy and diffuse correlation spectroscopy. The 3D images the researchers ultimately obtained are high resolution and bring spatial resolution to the class of measurements that make the information usable to monitor brain blood flow.

The consortium takes its inspiration from projects of similar scope and technologies, including BabyLux and LUCA from the European Commission, and Photodementia, a 20-year collaboration with the Children’s Hospital of Philadelphia.

The TinyBrain project is set to conclude by 2024. It will conduct future trials at the Hospital Sant Joan de Déu in Barcelona.


Photonics.com
Apr 2021
Research & TechnologyBiophotonicsbrainimagingLEDslasersNIRnear-infraredbabybabiesnewborn babiesinfantinfantsbrain damageEuropeICFOICFO BarcelonaTinyBrains

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.