Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Continuous-Wave OPA Supports Noise-Reduced Chip-Scale Optical Signal Processing

Facebook Twitter LinkedIn Email
GOTHENBURG, Sweden, Oct. 8, 2021 — An optical amplifier developed at Chalmers University of Technology is poised to radically improve optical communications performance. The compact amplifier is designed to fit on a chip and amplify light without generating excess noise.

Light-based communications make it possible to send information around the world and into space. However, when it travels long distances, the light loses power. Without amplifiers, up to 99% of the signal in an optical fiber cable would disappear within 100 km.

As a result, multiple amplifiers are needed to support optical transmission, and each added amplifier increases the noise level. This diminishes signal quality.

The compact optical amplifier developed at Chalmers is thousands of times smaller than its precursor, its developers said. The component is made of silicon nitride and consists of nine separate waveguides. Each waveguide is composed of 22 spirals and can amplify light by about 10 times with a noise figure of only 1.2 decibels. Each waveguide on the 20 mm chip outperforms a single bulky amplifier. Courtesy of Ping Zhao, Zhichao Ye, and Yen Strandqvist/Chalmers University of Technology.
The compact optical amplifier developed at Chalmers is thousands of times smaller than its precursor, its developers said. The component is made of silicon nitride and consists of nine separate waveguides. Each waveguide is composed of 22 spirals and can amplify light by about 10 times with a noise figure of only 1.2 decibels. Each waveguide on the 20-mm chip outperforms a single bulky amplifier. Courtesy of Ping Zhao, Zhichao Ye, and Yen Strandqvist/Chalmers University of Technology.
Optical parametric amplifiers (OPAs), which use a nonlinear optical material to create amplification, can amplify signals without generating excess noise. The monolithic OPA developed by the Chalmers team based on the Kerr effect demonstrates a noise figure that is well below the conventional quantum limit when operated in phase-sensitive mode.

Although other amplifiers have used the Kerr effect, none have demonstrated the ability to do so in a format as compact as the Chalmers device — which is small enough to fit on a computer chip just several mm in size.

The amplifier operates in a continuous wave (CW). The researchers said that until now, parametric amplifiers have operated with a pulsed pump only, limiting their use in real applications.

The Chalmers team used a low-loss (1.4 dB/m) silicon nitride waveguide within a chip area of 23 mm2, to demonstrate CW parametric amplification of 9.5 dB with a noise figure of 1.2 dB — considerably below the conventional 3-dB quantum limit and, according to the team, the lowest loss ever achieved in a dispersion-engineered, integrated waveguide, silicon-nitride material platform. Because silicon nitride is transparent from the visible to the mid-infrared wavelength range, its use makes the amplifier scalable to different wavelengths.


With very low noise and a small monolithic footprint, the CW-pumped, silicon nitride-based amplifier could be a milestone for optical communications, ultrafast spectroscopy, and quantum optics and metrology. The researchers believe that an even lower noise figure and an even higher gain in amplification are possible by further reducing the waveguide losses, increasing the waveguide length, and reducing the crosstalk between the fundamental and higher-order optical modes.

The new component is made of silicon nitride and consists of nine separate waveguides (left). Each waveguide is composed of 22 spirals and can amplify light by about ten times with a noise figure of only 1.2 decibels. Each spiral (right) has an area of 1 square millimeter and the shape enables the compact design of the amplifier.
The new component is made of silicon nitride and consists of nine separate waveguides (left). Each waveguide is composed of 22 spirals and can amplify light by about 10 times with a noise figure of only 1.2 dB. Each spiral (right) has an area of 1 mm2 and the shape enables the compact design of the amplifier. Courtesy of Zhichao Ye and Yen Strandqvist/Chalmers University of Technology.
“Since it’s possible to integrate the amplifier into very small modules, you can get cheaper solutions with much better performance, making this very interesting for commercial players in the long run,” said professor Peter Andrekson, who led the research.

The amplifier’s strong performance also means that fewer amplifiers would be needed for long-distance data transmission, making it a cost-effective option for boosting optical signals.

“We consider this to be an important step toward practical use, not only in communication, but in areas including quantum computers, various sensor systems, and in metrology when making atmospheric measurements from satellites for Earth monitoring,” Andrekson said. “This could be compared to switching from older, dial-up internet to modern broadband, with high speed and quality.”

The research was published in Science Direct (www.science.org/doi/10.1126/sciadv.abi8150).

Photonics.com
Oct 2021
GLOSSARY
metrology
The science of measurement, particularly of lengths and angles.
quantum
Smallest amount into which the energy of a wave can be divided. The quantum is proportional to the frequency of the wave. See photon.
quantum optics
The area of optics in which quantum theory is used to describe light in discrete units or "quanta" of energy known as photons. First observed by Albert Einstein's photoelectric effect, this particle description of light is the foundation for describing the transfer of energy (i.e. absorption and emission) in light matter interaction.
educationResearch & TechnologyEuropeChalmers University of TechnologyChalmers UniversitySwedenopticsoptical amplificationoptical metrologymetrologyfiber opticslight sourcesquantumquantum opticsquantum metrologyTest & Measurementspectroscopic applicationsnanowaveguidesoptical waveguidingsingle-mode waveguidingoptical devices

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.