Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Corral Sculpts Surface States

Facebook Twitter LinkedIn Email Comments
Richard Gaughan

While pursuing an understanding of the factors influencing the photonic local density of states that determines electromagnetic interactions near a surface, a research team has designed a structure that can manipulate these states.

Researchers have determined that, by controlling the placement of nanostructures on a planar surface, they can tailor the photonic local density of states within the corral. The phenomenon is similar to that observed in electron corrals of iron atoms on copper. Courtesy of Centre National de la Recherche Scientifique.

Gérard Colas des Francs and his colleagues at the Centre National de la Recherche Scientifique and the Université de Bourgogne in Dijon have calculated that a ring of dielectric cylinders would create an optical corral similar to those formed by iron atoms on copper that have demonstrated electron confinement. With 100-nm cylinders arranged in a 3.6-µm-diameter circle, the local density of states within the circle would be strongly modulated.

How does this influence the spectral properties of the region? The corral creates resonances at various wavelengths in its area. For example, the corral will be bright for 440 nm and dark for 465 nm.

Colas des Francs believes this is significant because it demonstrates that techniques such as lithography could offer the ability to tailor the photonic local density of states. In work being prepared for publication, researchers at the university have validated the theory by measuring the photonic local density with an adapted scanning near-field optical microscope.


Besides improving the understanding of surface states, manipulating the local density could enable practical applications, Colas des Francs said. Because fluorescence is dependent on the photonic local density of states at a molecule's position, he explained, controlling these states enables one to control fluorescence, "which has major applications in energy transfer, for example, between molecules adsorbed on a surface."

Photonics Spectra
Aug 2001
industrialMicroscopyResearch & TechnologyTech Pulse

view all
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.