Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

Chemical Device Uses Light to Reprogram Gene Expression

BioPhotonics
Dec 2018
Researchers at Texas A&M have developed a chemical or light-inducible transcriptional reprogramming device to illuminate the functions of genes during different biological processes, using calcium and light. The CaRROT system (calcium-responsive transcriptional reprogramming tool) can control the transcription of genes within the body with a high degree of precision, including how, when, and where genes create the proteins that perform various cellular functions.

The light-inducible device combines photoswitchable genetically encoded calcium actuators with dCas9 to control gene expression. (Cas9 is CRISPR-associated protein 9; dCas9, or dead Cas9, is a mutant form of Cas9).

The device uses light pulses to induce the flow of calcium ions into cells. The calcium signals generated by light are used to deliver the genome-engineering tool derived from the CRISPR/Cas9 system to turn on genes.

“When the light is switched on, the gates controlling calcium ions open to allow the flow of calcium from the external space into the cytoplasm of the cell,” said researcher Nhung Nguyen. “This process ultimately turns on the expression of specific genes.”

The turning on of gene expression can then lead to changes in the function of the cell.

“We have screened dozens of engineered proteins and undergone numerous rounds of optimization to make the CaRROT system strictly responsive to light,” said researcher Lian He.

To evaluate how effective CaRROT is in mammalian cells, the team will test it on genes that control the differentiation of neuron and skeletal muscle.

Researchers hope that CaRROT can be used in regenerative medicine as a tool to drive the precise differentiation of stem cells into any type of organ that is required.

“The improvement of light penetration in deep tissue makes us optimistic that we could use CaRROT to reprogram cells in damaged organs,” said researcher Yun Huang. “It is possible that one day, by just exposing the tissues to light, we can heal the wound or accelerate the regeneration of injured tissues by photo-tuning coordinated gene expression.”

CaRROT could also be used to document calcium-dependent activity in mammals after exposure to ligands or chemicals that would elicit calcium response inside cells.

The research was published in ACS Synthetic Biology (doi:10.1021/acssynbio.7b00467).


GLOSSARY
optogenetics
A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of...
Research & TechnologyAmericaseducationlight sourcesoptogeneticsmedicinemedicalBiophotonicsCRISPRtranscriptional reprogrammingBioScan

Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.