Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Dual Microscopes Illuminate Electronic Switching Speeds

Facebook Twitter LinkedIn Email Comments
GAITHERSBURG, Md., Sept. 29 -- Although silicon is still the mainstay of the semiconductor industry, a new method may put materials like gallium nitride and silicon carbide into wider use in scanning semiconductors for defects. Such advanced semiconductor materials can operate at higher voltages and provide faster switching speeds, an important characteristic in determining how fast a semiconductor circuit can process information.

Joseph Kopanski, a researcher for the National Institute of Standards and Technology, and Korean guest researcher G. H. Buh combined an atomic force microscope (AFM) with a scanning capacitance microscope, then added custom software and a simple on/off switch for the AFM’s positioning laser. The result is an instrument that can measure how fast a material generates electrical charges and then map those speeds in sections, at least for gallium nitride, that are only about 100 nanometers square. Current methods for measuring switching speed (carrier lifetime) produce only bulk averages.

According to Joseph Kopanski, the system allows quick scanning of semiconductor wafers for defects that otherwise may not be found until an expensive device has already been built on the material. Most defects in semiconductors (i.e., sections with missing atoms) are presumed to slow down the speed that charges move through a material. Kopanski said further research using the new technique should determine if this assumption is correct. A patent application is pending on the technique.

The work is described in the the Sept. 22 issue of Applied Physics Letters.

For more information, visit:
Sep 2003
atomic force microscopeBasic Sciencegallium nitrideMicroscopyNational Institute of Standards and TechnologyNews & Featuressemiconductor

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.