Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Dyes Improve Solar Technologies

Facebook Twitter LinkedIn Email Comments
BUFFALO, N.Y., Jan. 24, 2011 — A new class of photosensitizing dyes that increase the efficiency of light-driven systems has been synthesized by chemists at the University at Buffalo.

With the ability to produce two kinds of green energy—solar electricity and clean-burning hydrogen fuel—the new dyes could power everything from household appliances to hydrogen vehicles.

To produce electricity, the dyes—called chalcogenorhodamine dyes—operate as part of a Grätzel-type solar cell that converts sunlight into an electric current. When sunlight strikes the dyes, the energy knock loose electrons in the dyes that travel through the solar cell, forming the current.

Producing hydrogen begins in the same way, with sunlight striking the dye to free electrons. Instead of forming a current, the electrons flow into a catalyst, where they drive a chemical reaction that splits water into hydrogen and oxygen.

The research team from UB and the University of Rochester were able to show that chalcogenorhodamine systems produce hydrogen at unprecedented rates in laboratory tests. This is because the dyes absorb light more intensely and transfer their electrons more efficiently than conventional dyes. Their findings were published in the Journal of American Chemical Society in October 2010.

The research is anticipated to lead to the development of better commercial technologies for producing solar electricity and hydrogen on demand.

“Sunlight in one hour could power the world for a year, but we don’t tap into it for either electricity or for making solar fuels,” said Michael Detty, UB professor. “Plants use sunlight to make their own fuels. Humans don’t. We use oil. So if we want to have energy independence, it will come from solar.”

A Notice of Allowance from the US Patent and Trademark Office approving the issue of a patent to cover the dye’s composition was received by UB. The university’s Office of Science and Technology Transfer and Economic Outreach will handle licensing of the discoveries.

For more information, visit:
Jan 2011
A charged elementary particle of an atom; the term is most commonly used in reference to the negatively charged particle called a negatron. Its mass at rest is me = 9.109558 x 10-31 kg, its charge is 1.6021917 x 10-19 C, and its spin quantum number is 1/2. Its positive counterpart is called a positron, and possesses the same characteristics, except for the reversal of the charge.
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
Americascatalystchalcogenorhodaminechemical reactioncurrentdyeelectronelectron flowenergyGrätzelgreen energygreen photonicshousehold applianceshydrogenhydrogen fuellicensinglightMichael Dettynotice of allowancepatentpatentsphotosensitizing dyesResearch & Technologysolarsolar cellssolar electricitysolar fuelUniversity at BuffaloUniversity of RochesterUS Patent and Trademark Office

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.